Displaying similar documents to “The treatment of “pinching locking” in 3D-shell elements”

Mixed finite element approximation of 3D contact problems with given friction: Error analysis and numerical realization

Jaroslav Haslinger, Taoufik Sassi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This contribution deals with a mixed variational formulation of 3D contact problems with the simplest model involving friction. This formulation is based on a dualization of the set of admissible displacements and the regularization of the non-differentiable term. Displacements are approximated by piecewise linear elements while the respective dual variables by piecewise constant functions on a dual partition of the contact zone. The rate of convergence is established provided that...

Improved flux reconstructions in one dimension

Vlasák, Miloslav, Lamač, Jan

Similarity:

We present an improvement to the direct flux reconstruction technique for equilibrated flux a posteriori error estimates for one-dimensional problems. The verification of the suggested reconstruction is provided by numerical experiments.

A finite element method for stiffened plates

Ricardo Durán, Rodolfo Rodríguez, Frank Sanhueza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown to...

A finite element method for stiffened plates

Ricardo Durán, Rodolfo Rodríguez, Frank Sanhueza (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown...

Numerical analysis and simulations of quasistatic frictionless contact problems

José Fernández García, Weimin Han, Meir Shillor, Mircea Sofonea (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

A summary of recent results concerning the modelling as well as the variational and numerical analysis of frictionless contact problems for viscoplastic materials are presented. The contact is modelled with the Signorini or normal compliance conditions. Error estimates for the fully discrete numerical scheme are described, and numerical simulations based on these schemes are reported.

Quadratic finite elements with non-matching grids for the unilateral boundary contact

S. Auliac, Z. Belhachmi, F. Ben Belgacem, F. Hecht (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We analyze a numerical model for the Signorini unilateral contact, based on the mortar method, in the quadratic finite element context. The mortar frame enables one to use non-matching grids and brings facilities in the mesh generation of different components of a complex system. The convergence rates we state here are similar to those already obtained for the Signorini problem when discretized on conforming meshes. The matching for the unilateral contact driven by mortars preserves...

A convex treatment of numerical radius inequalities

Zahra Heydarbeygi, Mohammad Sababheh, Hamid Moradi (2022)

Czechoslovak Mathematical Journal

Similarity:

We prove an inner product inequality for Hilbert space operators. This inequality will be utilized to present a general numerical radius inequality using convex functions. Applications of the new results include obtaining new forms that generalize and extend some well known results in the literature, with an application to the newly defined generalized numerical radius. We emphasize that the approach followed in this article is different from the approaches used in the literature to...