Quadratic finite elements with non-matching grids for the unilateral boundary contact

S. Auliac; Z. Belhachmi; F. Ben Belgacem; F. Hecht

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 4, page 1185-1205
  • ISSN: 0764-583X

Abstract

top
We analyze a numerical model for the Signorini unilateral contact, based on the mortar method, in the quadratic finite element context. The mortar frame enables one to use non-matching grids and brings facilities in the mesh generation of different components of a complex system. The convergence rates we state here are similar to those already obtained for the Signorini problem when discretized on conforming meshes. The matching for the unilateral contact driven by mortars preserves then the proper accuracy of the quadratic finite elements. This approach has already been used and proved to be reliable for the unilateral contact problems even for large deformations. We provide however some numerical examples to support the theoretical predictions.

How to cite

top

Auliac, S., et al. "Quadratic finite elements with non-matching grids for the unilateral boundary contact." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.4 (2013): 1185-1205. <http://eudml.org/doc/273311>.

@article{Auliac2013,
abstract = {We analyze a numerical model for the Signorini unilateral contact, based on the mortar method, in the quadratic finite element context. The mortar frame enables one to use non-matching grids and brings facilities in the mesh generation of different components of a complex system. The convergence rates we state here are similar to those already obtained for the Signorini problem when discretized on conforming meshes. The matching for the unilateral contact driven by mortars preserves then the proper accuracy of the quadratic finite elements. This approach has already been used and proved to be reliable for the unilateral contact problems even for large deformations. We provide however some numerical examples to support the theoretical predictions.},
author = {Auliac, S., Belhachmi, Z., Ben Belgacem, F., Hecht, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {unilateral contact conditions; quadratic finite elements; non-matching grids; mortar matching},
language = {eng},
number = {4},
pages = {1185-1205},
publisher = {EDP-Sciences},
title = {Quadratic finite elements with non-matching grids for the unilateral boundary contact},
url = {http://eudml.org/doc/273311},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Auliac, S.
AU - Belhachmi, Z.
AU - Ben Belgacem, F.
AU - Hecht, F.
TI - Quadratic finite elements with non-matching grids for the unilateral boundary contact
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 4
SP - 1185
EP - 1205
AB - We analyze a numerical model for the Signorini unilateral contact, based on the mortar method, in the quadratic finite element context. The mortar frame enables one to use non-matching grids and brings facilities in the mesh generation of different components of a complex system. The convergence rates we state here are similar to those already obtained for the Signorini problem when discretized on conforming meshes. The matching for the unilateral contact driven by mortars preserves then the proper accuracy of the quadratic finite elements. This approach has already been used and proved to be reliable for the unilateral contact problems even for large deformations. We provide however some numerical examples to support the theoretical predictions.
LA - eng
KW - unilateral contact conditions; quadratic finite elements; non-matching grids; mortar matching
UR - http://eudml.org/doc/273311
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press (1975). Zbl1098.46001MR450957
  2. [2] A.K. Aziz and I. Babuška, The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press, New York (1972). Zbl0259.00014MR347104
  3. [3] L. Baillet and T. Sassi, Mixed finite element formulation in large deformation frictional contact problem. European J. Comput. Mech.14 (2005) 287–304. Zbl1226.74027
  4. [4] Z. Belhachmi and F. Ben Belgacem, Quadratic finite element for Signorini problem. Math. Comput.72 (2003) 83–104. Zbl1112.74446MR1933319
  5. [5] F. Ben Belgacem, P. Hild and P. Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Math. Models Methods Appl. Sci.9 (1999) 287–303. Zbl0940.74056MR1674556
  6. [6] F. Ben Belgacem, Y. Renard and L. Slimane, A Mixed Formulation for the Signorini Problem in nearly Incompressible Elasticity. Appl. Numer. Math.54 (2005) 1–22. Zbl1086.74037MR2134092
  7. [7] F. Ben Belgacem and Y. Renard, Hybrid finite element methods for the Signorini problem. Math. Comput.72 (2003) 1117–1145. Zbl1023.74043MR1972730
  8. [8] C. Bernardi, Y. Maday and A.T. Patera,A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method, Collège de France seminar, edited by H. Brezis, J.-L. Lions. Pitman (1994) 13–51. Zbl0797.65094MR1268898
  9. [9] S.C. Brenner and L.R. Scott, Mathematical Theory of Finite Element Methods. Texts Appl. Math. Springer Verlag, New-York 15 (1994). Zbl0804.65101MR1278258
  10. [10] J.-F. Bonnans, J. Ch. Gilbert, C. Lemaréchal and C.A. Sagastizábal, Numerical optimization: Theoretical and practical aspects. Universitext (Second revised ed. translation of 1997 French ed.). Springer-Verlag, Berlin (2006). Zbl1108.65060MR2265882
  11. [11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series Comput. Math., vol. 15. Springer Verlag, New York (1991). Zbl0788.73002MR1115205
  12. [12] F. Brezzi, W.W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities. Numer. Math.28 (1977) 431–443. Zbl0369.65030MR448949
  13. [13] L. Cazabeau, Y. Maday and C. Lacour, Numerical quadratures and mortar methods. In Computational Sciences for the 21-st Century, edited by Bristeau et al., Wiley and Sons (1997) 119–128. Zbl0911.65117
  14. [14] A. Chernov, M. Maischak and E.P. Stephan, hp-mortar boundary element method for two-body contact problems with friction. Math. Methods Appl. Sci. 31 (2008) 2029–2054. Zbl1149.74051MR2457761
  15. [15] P.-G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland (1978). Zbl0511.65078MR520174
  16. [16] M. Crouzeix and V. Thomée, The Stability in Lp and W1,p of the L2-Projection on Finite Element Function Spaces. Mathods Comput.48 (1987) 521–532. Zbl0637.41034MR878688
  17. [17] G. Duvaut and J.-P. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). Zbl0298.73001
  18. [18] S. Faletta, The Approximate Integration in the Mortar Method Constraint. Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng. Part III, 55 (2007) 555–563. MR2334147
  19. [19] R.S. Falk, Error Estimates for the Approximation of a Class of Variational Inequalities. Math. Comput.28963–971 (1974). Zbl0297.65061MR391502
  20. [20] K.A. Fischer and P. Wriggers, Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput. Mech.36 (2005) 226–244. Zbl1102.74033
  21. [21] B. Flemisch, M.A. Puso and B.I. Wohlmuth, A new dual mortar method for curved interfaces: 2D elasticity. Internat. J. Numer. Methods Eng.63 (2005) 813–832. Zbl1084.74050MR2144916
  22. [22] J. Haslinger, I. Hlavcáček and J. Nečas, Numerical Methods for Unilateral Problems in Solid Mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, edited by P.G. Ciarlet and J.L. Lions. North Holland (1996). Zbl0873.73079MR1422506
  23. [23] F. Hecht, Freefem++. Third Edition, Version 3.11-1 http://www.freefem.org/ff++http://www.freefem.org/ff++. 
  24. [24] P. Hild and Y. Renard, An improved a priori error analysis for finite element approximations of Signorini’s problem. SIAM J. Numer. Analys. to appear (2012). Zbl1260.74027MR3022224
  25. [25] P. Hild, Problèmes de contact unilatéral et maillages éléments finis incompatibles. Thèse de l’Université Paul Sabatier, Toulouse 3 (1998). 
  26. [26] P. Hild, Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput. Methods Appl. Mech. Eng.184 (2000) 99–123. Zbl1009.74062MR1752624
  27. [27] P. Hild, P. Laborde. Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math.41 (2002) 401–421. Zbl1062.74050MR1903172
  28. [28] D. Hua, L. Wang. A mixed finite element method for the unilateral contact problem in elasticity. Sci. China Ser. A49 (2006) 513–524. Zbl1104.74059MR2250480
  29. [29] S. Hüeber, B.I. Wohlmuth. An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal.43 (2005) 156–173. Zbl1083.74047MR2177139
  30. [30] S. Hüeber, M. Mair and B.I. Wohlmuth, A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl. Numer. Math.54 (2005) 555–576. Zbl1114.74058MR2149369
  31. [31] N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM (1988). Zbl0685.73002MR961258
  32. [32] T.Y. Kim, J.E. Dolbow and T.A. Laursen, A Mortared Finite Element Method for Frictional Contact on Arbitrary Surfaces. Comput. Mech.39 (2007) 223–235. Zbl1178.74169
  33. [33] T.A. Laursen, M.A. Puso and J. Sandersc, Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations. Comput. Methods Appl. Mech. Eng. 205-208 (2012) 3–15. Zbl1239.74070MR2872022
  34. [34] T.A. Laursen and B. Yang, New Developments in Surface-to-Surface Discretization Strategies for Analysis of Interface Mechanics. Computational Plasticity. Comput. Methods Appl. Sci.7 (2010) 67–86. MR2432699
  35. [35] M.-X. Li, Q. Lin and S.-H. Zhang, Superconvergence of finite element method for the Signorini problem. J. Comput. Appl. Math.222 (2008) 284–292. Zbl1148.74044MR2474630
  36. [36] M. Moussaoui and K. Khodja, Régularité des solutions d’un problème mêlé Dirichlet–Signorini dans un domaine polygonal plan. Commun. Part. Differ. Equ.17 (1992) 805–826. Zbl0806.35049MR1177293
  37. [37] M.A. Puso, T.A. Laursen and J. Solberg, A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput. Meth. Appl. Mech. and Eng.197 (2008) 555–566. Zbl1169.74627MR2396042
  38. [38] M.A. Puso and T.A. Laursen, A Mortar Segment-to-Segment Contact Method for Large Deformation Solid Mechanics. Comput. Methods Appl. Mech. Eng.193 (2004) 601–629. Zbl1060.74636MR2097761
  39. [39] P. Seshaiyer and M. Suri, Uniform h − p Convergence Results for the Mortar Finite Element Method. Math. Comput. 69 521–546 (2000). Zbl0944.65113MR1642762
  40. [40] L. Slimane, Méthodes mixtes et traitement du verrouillage numérique pour la résolution des inéquations variationnelles. Thèse l’Institut National des Sciences Appliquées de Toulouse (2001). 
  41. [41] B.I. Wohlmuth, A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier. SIAM J. Numer. Anal. 38 (2001) 989–1012,. Zbl0974.65105MR1781212
  42. [42] B. Wohlmuth, R. Krause. Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J. Sci. Comput.25 (2003) 324–347. Zbl1163.65334MR2047208
  43. [43] B. Yang, T.A. Laursen, X. Meng. Two dimensional mortar contact methods for large deformation frictional sliding. Internat. J. Numer. Methods Eng.62 (2005) 1183–1225. Zbl1161.74497MR2120292
  44. [44] Z.-H. Zhong, Finite Element Procedures for Contact-Impact Problems. Oxford University Press (1993). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.