An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 4, page 749-765
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBoillat, Éric. "An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis 35.4 (2010): 749-765. <http://eudml.org/doc/197434>.
@article{Boillat2010,
abstract = {
In this article, we consider the initial value problem which is obtained
after a space discretization (with space step h)
of the equations governing the solidification process of
a multicomponent alloy.
We propose a numerical scheme to solve numerically this initial value
problem. We prove an error estimate which is not affected by
the step size h chosen in the space discretization. Consequently, our scheme
provides global convergence without any stability condition between h and
the time step size τ. Moreover, it is not of
excessive algorithmic complexity since it does not require more than
one resolution of a linear system at each time step.
},
author = {Boillat, Éric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonlinear diffusion equations; nonlinear parabolic problem; Chernoff scheme; implicit scheme for ODE's.; nonlinear parabolic problems; diffusion equations; initial value problem; solidification; multicomponent alloy; global convergence; stability; algorithmic complexity; Chernoff algorithm},
language = {eng},
month = {3},
number = {4},
pages = {749-765},
publisher = {EDP Sciences},
title = {An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations},
url = {http://eudml.org/doc/197434},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Boillat, Éric
TI - An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 4
SP - 749
EP - 765
AB -
In this article, we consider the initial value problem which is obtained
after a space discretization (with space step h)
of the equations governing the solidification process of
a multicomponent alloy.
We propose a numerical scheme to solve numerically this initial value
problem. We prove an error estimate which is not affected by
the step size h chosen in the space discretization. Consequently, our scheme
provides global convergence without any stability condition between h and
the time step size τ. Moreover, it is not of
excessive algorithmic complexity since it does not require more than
one resolution of a linear system at each time step.
LA - eng
KW - Nonlinear diffusion equations; nonlinear parabolic problem; Chernoff scheme; implicit scheme for ODE's.; nonlinear parabolic problems; diffusion equations; initial value problem; solidification; multicomponent alloy; global convergence; stability; algorithmic complexity; Chernoff algorithm
UR - http://eudml.org/doc/197434
ER -
References
top- A. Friedman, The Stefan problem in several space variables. Trans. Amer. Math. Soc.132 (1968) 51-87.
- A.E. Berger, H. Brezis and J.C.W. Rogers, A numerical method for solving ut - Δƒ(u) = 0. RAIRO. Anal. Numér.13 (1979) 297-312.
- C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal.7 (1987) 61-71.
- S.R. De Groot and P. Mazur, Non-equilibrium thermodynamics. North-Holland, Amsterdam (1962).
- H. Brezis, Analyse fonctionnelle, Théorie et applications. Masson, Paris (1993).
- H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z.183 (1983) 311-341.
- I. Prigogine, Thermodynamics of irreversible processes. Interscience Publ. (1967).
- J.D.P. Donnelly, A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Appl.24 (1979) 425-438.
- J.F. Ciavaldini, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal.12 (1975) 464-487.
- J.W. Jerome and M.E. Rose, Error estimates for the multidimensional two-phase Stefan problem. Math. Comp.39 (1982) 377-414.
- K. Yosida, Functional Analysis. Springer-Verlag, Berlin (1984).
- E. Magenes, Remarques sur l'approximation des problèmes paraboliques non-linéaires, in Analyse Mathématique et Applications, Gauthier-Villars, Paris (1988) 297-318.
- E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO. Modèl. Math. Anal. Numér.21 (1987) 655-678.
- M. Crouzeix and A.L. Mignot, Analyse numérique des équations différentielles. Masson (1989).
- G.H. Meyer, Multidimensional Stefan problems. SIAM J. Numer. Anal.10 (1973) 522-538.
- O. Krüger, Modélisation et analyse numérique de problèmes de réaction-diffusion provenant de la solidification d'alliages binaires. Technical Report 2071, Thèse EPFL (1999).
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).
- M. Paolini, G. Sacchi and C. Verdi, Finite element approximations of singular parabolic problems. Internat. J. Numer. Methods Engrg.26 (1988) 1989-2007.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978).
- J. Rulla, Error analysis for implicit approximations to Cauchy problems. SIAM J. Numer. Anal.33 (1996) 68-87.
- V. Thomée, Galerkin finite element methods for Parabolic Problems. Springer-Verlag, Berlin (1984).
- W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO. Modèl. Math. Anal. Numér.29 (1995) 605-627.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.