Displaying similar documents to “Relationship of certain rings of infinite matrices over integers”

Left APP-property of formal power series rings

Zhongkui Liu, Xiao Yan Yang (2008)

Archivum Mathematicum

Similarity:

A ring R is called a left APP-ring if the left annihilator l R ( R a ) is right s -unital as an ideal of R for any element a R . We consider left APP-property of the skew formal power series ring R [ [ x ; α ] ] where α is a ring automorphism of R . It is shown that if R is a ring satisfying descending chain condition on right annihilators then R [ [ x ; α ] ] is left APP if and only if for any sequence ( b 0 , b 1 , ) of elements of R the ideal l R ( j = 0 k = 0 R α k ( b j ) ) is right s -unital. As an application we give a sufficient condition under which...

Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings

Vijay Kumar Bhat (2013)

Czechoslovak Mathematical Journal

Similarity:

Let R be a ring. We recall that R is called a near pseudo-valuation ring if every minimal prime ideal of R is strongly prime. Let now σ be an automorphism of R and δ a σ -derivation of R . Then R is said to be an almost δ -divided ring if every minimal prime ideal of R is δ -divided. Let R be a Noetherian ring which is also an algebra over ( is the field of rational numbers). Let σ be an automorphism of R such that R is a σ ( * ) -ring and δ a σ -derivation of R such that σ ( δ ( a ) ) = δ ( σ ( a ) ) for all a R . Further,...

On a theorem of McCoy

Rajendra K. Sharma, Amit B. Singh (2024)

Mathematica Bohemica

Similarity:

We study McCoy’s theorem to the skew Hurwitz series ring ( HR , ω ) for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring R satisfies McCoy’s theorem of skew Hurwitz series.

A commutativity theorem for associative rings

Mohammad Ashraf (1995)

Archivum Mathematicum

Similarity:

Let m > 1 , s 1 be fixed positive integers, and let R be a ring with unity 1 in which for every x in R there exist integers p = p ( x ) 0 , q = q ( x ) 0 , n = n ( x ) 0 , r = r ( x ) 0 such that either x p [ x n , y ] x q = x r [ x , y m ] y s or x p [ x n , y ] x q = y s [ x , y m ] x r for all y R . In the present paper it is shown that R is commutative if it satisfies the property Q ( m ) (i.e. for all x , y R , m [ x , y ] = 0 implies [ x , y ] = 0 ).