The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An application of set-pair systems for multitransversals”

Total domination edge critical graphs with maximum diameter

Lucas C. van der Merwe, Cristine M. Mynhardt, Teresa W. Haynes (2001)

Discussiones Mathematicae Graph Theory

Similarity:

Denote the total domination number of a graph G by γₜ(G). A graph G is said to be total domination edge critical, or simply γₜ-critical, if γₜ(G+e) < γₜ(G) for each edge e ∈ E(G̅). For 3ₜ-critical graphs G, that is, γₜ-critical graphs with γₜ(G) = 3, the diameter of G is either 2 or 3. We characterise the 3ₜ-critical graphs G with diam G = 3.

Critical Graphs for R(P n , P m ) and the Star-Critical Ramsey Number for Paths

Jonelle Hook (2015)

Discussiones Mathematicae Graph Theory

Similarity:

The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. The star-critical Ramsey number r∗(G,H) is the smallest integer k such that every 2-coloring of the edges of Kr − K1,r−1−k contains either a red copy of G or a blue copy of H. We will classify the critical graphs, 2-colorings of the complete graph on R(G,H) − 1 vertices with no red G or blue H, for the path-path Ramsey number. This...

Cyclically 5-edge connected non-bicritical critical snarks

Stefan Grünewald, Eckhard Steffen (1999)

Discussiones Mathematicae Graph Theory

Similarity:

Snarks are bridgeless cubic graphs with chromatic index χ' = 4. A snark G is called critical if χ'(G-{v,w}) = 3, for any two adjacent vertices v and w. For any k ≥ 2 we construct cyclically 5-edge connected critical snarks G having an independent set I of at least k vertices such that χ'(G-I) = 4. For k = 2 this solves a problem of Nedela and Skoviera [6].

The Connectivity Of Domination Dot-Critical Graphs With No Critical Vertices

Michitaka Furuya (2014)

Discussiones Mathematicae Graph Theory

Similarity:

An edge of a graph is called dot-critical if its contraction decreases the domination number. A graph is said to be dot-critical if all of its edges are dot-critical. A vertex of a graph is called critical if its deletion decreases the domination number. In A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743-3745, Chen and Shiu constructed for each even integer k ≥ 4 infinitely many k-dot-critical graphs G with no critical vertices and k(G) = 1. In this...

On the Independence Number of Edge Chromatic Critical Graphs

Shiyou Pang, Lianying Miao, Wenyao Song, Zhengke Miao (2014)

Discussiones Mathematicae Graph Theory

Similarity:

In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree △ and independence number α (G), α (G) ≤ [...] . It is known that α (G) < [...] |V |. In this paper we improve this bound when △≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in particular we prove that α (G) ≤ [...] |V | when △ ≥ 5 and n2 ≤ 2(△− 1)