Displaying similar documents to “Derivations with Engel conditions in prime and semiprime rings”

Derivations with power central values on Lie ideals in prime rings

Basudeb Dhara, Rajendra K. Sharma (2008)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of char R 2 with a nonzero derivation d and let U be its noncentral Lie ideal. If for some fixed integers n 1 0 , n 2 0 , n 3 0 , ( u n 1 [ d ( u ) , u ] u n 2 ) n 3 Z ( R ) for all u U , then R satisfies S 4 , the standard identity in four variables.

Generalized derivations in prime rings and Banach algebras

Asma Ali, Basudeb Dhara, Shahoor Khan (2014)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let R be a prime ring with extended centroid C, F a generalized derivation of R and n ≥ 1, m≥ 1 fixed integers. In this paper we study the situations: 1. ( F ( x y ) ) m = ( x y ) for all x,y ∈ I, where I is a nonzero ideal of R; 2. (F(x∘y))ⁿ=(x∘y)ⁿ for all x,y ∈ I, where I is a nonzero right ideal of R. Moreover, we also investigate the situation in semiprime rings and Banach algebras.

On ( σ , τ ) -derivations in prime rings

Mohammad Ashraf, Nadeem-ur-Rehman (2002)

Archivum Mathematicum

Similarity:

Let R be a 2-torsion free prime ring and let σ , τ be automorphisms of R . For any x , y R , set [ x , y ] σ , τ = x σ ( y ) - τ ( y ) x . Suppose that d is a ( σ , τ ) -derivation defined on R . In the present paper it is shown that ( i ) if R satisfies [ d ( x ) , x ] σ , τ = 0 , then either d = 0 or R is commutative ( i i ) if I is a nonzero ideal of R such that [ d ( x ) , d ( y ) ] = 0 , for all x , y I , and d commutes with both σ and τ , then either d = 0 or R is commutative. ( i i i ) if I is a nonzero ideal of R such that d ( x y ) = d ( y x ) , for all x , y I , and d commutes with τ , then R is commutative. Finally a related result has been obtain...