Displaying similar documents to “Measures of full dimension on self-affine sets”

Quantization Dimension Function and Ergodic Measure with Bounded Distortion

Mrinal Kanti Roychowdhury (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The quantization dimension function for the image measure of a shift-invariant ergodic measure with bounded distortion on a self-conformal set is determined, and its relationship to the temperature function of the thermodynamic formalism arising in multifractal analysis is established.

Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations

Franz Hofbauer (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights...

The recurrence dimension for piecewise monotonic maps of the interval

Franz Hofbauer (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We investigate a weighted version of Hausdorff dimension introduced by V. Afraimovich, where the weights are determined by recurrence times. We do this for an ergodic invariant measure with positive entropy of a piecewise monotonic transformation on the interval [ 0 , 1 ] , giving first a local result and proving then a formula for the dimension of the measure in terms of entropy and characteristic exponent. This is later used to give a relation between the dimension of a closed invariant subset...

Exactness of skew products with expanding fibre maps

Thomas Bogenschütz, Zbigniew Kowalski (1996)

Studia Mathematica

Similarity:

We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.