The recurrence dimension for piecewise monotonic maps of the interval
- [1] Fakultät für Mathematik Universität Wien Nordbergstraße 15 A 1090 Wien, Austria
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 3, page 439-449
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topHofbauer, Franz. "The recurrence dimension for piecewise monotonic maps of the interval." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.3 (2005): 439-449. <http://eudml.org/doc/84566>.
@article{Hofbauer2005,
abstract = {We investigate a weighted version of Hausdorff dimension introduced by V. Afraimovich, where the weights are determined by recurrence times. We do this for an ergodic invariant measure with positive entropy of a piecewise monotonic transformation on the interval $[0,1]$, giving first a local result and proving then a formula for the dimension of the measure in terms of entropy and characteristic exponent. This is later used to give a relation between the dimension of a closed invariant subset and a pressure function.},
affiliation = {Fakultät für Mathematik Universität Wien Nordbergstraße 15 A 1090 Wien, Austria},
author = {Hofbauer, Franz},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {439-449},
publisher = {Scuola Normale Superiore, Pisa},
title = {The recurrence dimension for piecewise monotonic maps of the interval},
url = {http://eudml.org/doc/84566},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Hofbauer, Franz
TI - The recurrence dimension for piecewise monotonic maps of the interval
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 3
SP - 439
EP - 449
AB - We investigate a weighted version of Hausdorff dimension introduced by V. Afraimovich, where the weights are determined by recurrence times. We do this for an ergodic invariant measure with positive entropy of a piecewise monotonic transformation on the interval $[0,1]$, giving first a local result and proving then a formula for the dimension of the measure in terms of entropy and characteristic exponent. This is later used to give a relation between the dimension of a closed invariant subset and a pressure function.
LA - eng
UR - http://eudml.org/doc/84566
ER -
References
top- [1] V. Afraimovich, Pesins dimension for Poincaré recurrences, Chaos 7 (1997), 12–20. Zbl0933.37019MR1439803
- [2] V. Afraimovich and J. Urias, Dimension–like characteristics of invariant sets in dynamical systems, In: “Dynamics and randomness”, A. Maass, S. Martinez and J. San Martin (eds.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 1–30. Zbl1031.37024MR1975573
- [3] V. Afraimovich, J.-R. Chazottes and B. Saussol, Local dimensions for Poincaré recurrence, Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 64–74. Zbl0955.37013MR1777857
- [4] J.-R. Chazottes and B. Saussol, On pointwise dimensions and spectra of measures, C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 719–723. Zbl1012.37017MR1868941
- [5] F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359–386. Zbl0578.60069MR843500
- [6] F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval, In: “Lyapunov exponents”, Proceedings, Oberwolfach, 1990, Lecture Notes in Mathematics 1486, L. Arnold, H. Crauel and J.–P. Eckmann (eds.), Springer, Berlin, 1991, pp. 227–231. Zbl0744.58042MR1178961
- [7] F. Hofbauer, Local dimension for piecewise monotonic maps on the interval, Ergod. Theory Dynam. Systems 15 (1995), 1119–1142. Zbl0842.58019MR1366311
- [8] F. Hofbauer and P. Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. J. Math. 35 (1992), 84–98. Zbl0701.28005MR1157469
- [9] F. Hofbauer, P. Raith and T. Steinberger, Multifractal dimensions for invariant subsets of piecewise monotonic interval maps, Fund. Math. 176 (2003), 209–232. Zbl1051.37011MR1992820
- [10] G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), 433–497. Zbl0686.58027MR1005524
- [11] G. Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), 183–200. Zbl0712.28008MR1026617
- [12] W. de Melo and S. van Strien, “One–dimensional dynamics”, Springer-Verlag Berlin-Heidelberg-New York, 1993. Zbl0791.58003MR1239171
- [13] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82–196. Zbl0841.28012MR1361481
- [14] Y. Pesin, “Dimension theory in dynamical systems: Contemporary views and applications”, The University of Chicago Press Chicago and London, 1997. Zbl0895.58033MR1489237
- [15] B. Saussol, S. Troubetzkoy and S. Vaienti, Recurrence, dimensions and Lyapunov exponents, J. Statist. Phys. 106 (2002), 623–634. Zbl1138.37300MR1884547
- [16] B. Saussol, S. Troubetzkoy and S. Vaienti, Recurrence and Lyapunov exponents, Moscow Math. J. 3 (2003), 189–203. Zbl1083.37504MR1996808
- [17] P. Walters, “An introduction to ergodic theory”, Springer-Verlag Berlin-Heidelberg-New York, 1982. Zbl0475.28009MR648108
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.