Some remarks on density points and the uniqueness property for invariant extensions of the Lebesgue measure
A. B. Kharazishvili (1994)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. B. Kharazishvili (1994)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Krzysztof Ciesielski, Andrzej Pelc (1985)
Fundamenta Mathematicae
Similarity:
Piotr Zakrzewski (1997)
Colloquium Mathematicae
Similarity:
Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits...
Giulio Pianigiani (1981)
Annales Polonici Mathematici
Similarity:
Paweł Góra (1989)
Banach Center Publications
Similarity:
Antoni Leon Dawidowicz (1992)
Annales Polonici Mathematici
Similarity:
A generalization of the Avez method of construction of an invariant measure is presented.
Antoni Leon Dawidowicz (1989)
Annales Polonici Mathematici
Similarity:
Antal Járai
Similarity:
CONTENTS§1. Introduction...............................................................5§2. Covariant extension of measures..............................6§3. An invariant extension of Haar measure..................15§4. Covariant extension of Lebesgue measure.............22References....................................................................26