Displaying similar documents to “Approximation of a Martensitic Laminate with Varying Volume Fractions”

Optimization of Rational Approximations by Continued Fractions

Blomquist, Frithjof (2007)

Serdica Journal of Computing

Similarity:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006. To get guaranteed machine enclosures of a special function f(x), an upper bound ε(f) of the relative error is needed, where ε(f) itself depends on the error bounds ε(app); ε(eval) of the approximation and evaluation error respectively. The approximation function g(x) ≈ f(x) is a rational function (Remez algorithm), and with sufficiently high...

Robust error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while...

An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy

John W. Barrett, James F. Blowey (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Using the approach in [5] for analysing time discretization error and assuming more regularity on the initial data, we improve on the error bound derived in [2] for a fully practical piecewise linear finite element approximation with a backward Euler time discretization of a model for phase separation of a multi-component alloy with non-smooth free energy.

Analysis and Numerical Approximation of an Electro-elastic Frictional Contact Problem

El. Essoufi, El. Benkhira, R. Fakhar (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We consider the problem of frictional contact between an piezoelectric body and a conductive foundation. The electro-elastic constitutive law is assumed to be nonlinear and the contact is modelled with the Signorini condition, nonlocal Coulomb friction law and a regularized electrical conductivity condition. The existence of a unique weak solution of the model is established. The finite elements approximation for the problem is presented, ...