Displaying similar documents to “Influence of Vibrations on Convective Instability of Reaction Fronts in Liquids”

Convective Instability of Reaction Fronts in Porous Media

K. Allali, A. Ducrot, A. Taik, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We study the influence of natural convection on stability of reaction fronts in porous media. The model consists of the heat equation, of the equation for the depth of conversion and of the equations of motion under the Darcy law. Linear stability analysis of the problem is fulfilled, the stability boundary is found. Direct numerical simulations are performed and compared with the linear stability analysis.

Long-time stability of noncharacteristic viscous boundary layers

Toan Nguyen, Kevin Zumbrun (2009-2010)

Séminaire Équations aux dérivées partielles

Similarity:

We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun. For large–amplitudes, it may be checked numerically, as done in one–dimensional...

Unconditional nonlinear stability in a polarized dielectric liquid

Giuseppe Mulone, Salvatore Rionero, Brian Straughan (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We derive a very sharp nonlinear stability result for the problem of thermal convection in a layer of dielectric fluid subject to an alternating current (AC). It is particularly important to note that the size of the initial energy in which we establish global nonlinear stability is not restricted whatsoever, and the Rayleigh-Roberts number boundary coincides with that found by a formal linear instability analysis.