Pairs of additive quadratic forms modulo one
R. C. Baker, S. Schäffer (1992)
Acta Arithmetica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
R. C. Baker, S. Schäffer (1992)
Acta Arithmetica
Similarity:
Latif, Naveed, Pečarić, J., Perić, I. (2011)
Annals of Functional Analysis (AFA) [electronic only]
Similarity:
Végh, A. (2005)
Beiträge zur Algebra und Geometrie
Similarity:
M. O. Omeike, A. U. Afuwape (2010)
Kragujevac Journal of Mathematics
Similarity:
Laurenţiu Panaitopol (2000)
Acta Arithmetica
Similarity:
Introduction. In this note we use the following standard notations: π(x) is the number of primes not exceeding x, while . The best known inequalities involving the function π(x) are the ones obtained in [6] by B. Rosser and L. Schoenfeld: (1) x/(log x - 1/2) < π(x) for x ≥ 67 (2) x/(log x - 3/2) > π(x) for . The proof of the above inequalities is not elementary and is based on the first 25 000 zeros of the Riemann function ξ(s) obtained by D. H. Lehmer [4]. Then Rosser, Yohe...
Ti Zuo Xuan (1999)
Acta Arithmetica
Similarity:
Foss, S. G., Denisov, D. Eh. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity:
Karl K. Norton (1994)
Acta Arithmetica
Similarity:
Aldea, Costel (2005)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Clemens Heuberger, Robert F. Tichy (1999)
Acta Arithmetica
Similarity: