The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Arithmetical aspects of certain functional equations”

Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson

Rolf Wallisser (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let Q be a nonconstant polynomial with integer coefficients and without zeros at the non–negative integers. Essentially with the method of Hermite, a new proof is given on linear independence of values at rational points of the function G ( x ) = n = 0 x n Q ( 1 ) Q ( 2 ) Q ( n ) .

On normal lattice configurations and simultaneously normal numbers

Mordechay B. Levin (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

Let q , q 1 , , q s 2 be integers, and let α 1 , α 2 , be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence ( α m q n , , α m + s - 1 q n ) m , n = 1 M N coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences ( x n ) n = 1 M N in s -dimensional unit cube ( s , M , N = 1 , 2 , ) . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence ( α 1 q 1 n , , α s q s n ) n = 1 N (Korobov’s problem).

Integrability theorems for trigonometric series

Bruce Aubertin, John Fournier (1993)

Studia Mathematica

Similarity:

We show that, if the coefficients (an) in a series a 0 / 2 + n = 1 a n c o s ( n t ) tend to 0 as n → ∞ and satisfy the regularity condition that m = 0 j = 1 [ n = j 2 m ( j + 1 ) 2 m - 1 | a n - a n + 1 | ] ² 1 / 2 < , then the cosine series represents an integrable function on the interval [-π,π]. We also show that, if the coefficients (bn) in a series n = 1 b n s i n ( n t ) tend to 0 and satisfy the corresponding regularity condition, then the sine series represents an integrable function on [-π,π] if and only if n = 1 | b n | / n < . These conclusions were previously known to hold under stronger restrictions on the sizes...