Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition
Eberhard Bänsch; Klaus Deckelnick
- Volume: 33, Issue: 5, page 923-938
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBänsch, Eberhard, and Deckelnick, Klaus. "Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 923-938. <http://eudml.org/doc/193958>.
@article{Bänsch1999,
author = {Bänsch, Eberhard, Deckelnick, Klaus},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Stokes equations; Navier-Stokes equations; slip boundary conditions; optimal error estimates; velocity; pressure; Sobolev spaces},
language = {eng},
number = {5},
pages = {923-938},
publisher = {Dunod},
title = {Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition},
url = {http://eudml.org/doc/193958},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Bänsch, Eberhard
AU - Deckelnick, Klaus
TI - Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 923
EP - 938
LA - eng
KW - Stokes equations; Navier-Stokes equations; slip boundary conditions; optimal error estimates; velocity; pressure; Sobolev spaces
UR - http://eudml.org/doc/193958
ER -
References
top- [1] E. Bänsch, Local Mesh Refinement in 2 and 3 Dimensions. Impact Comp. Sci. Eng. 3 (1991) 181-191. Zbl0744.65074MR1141298
- [2] E. Bänsch and B. Höhn, Numerical treatment of the Navier-Stokes equations with slip-boundary conditions. Preprint 9/ 1998, Universität Freiburg; SIAM J. Sci. Comp. (Submitted). Zbl0970.76056MR1762035
- [3] G. K. Batchelor, An Introduction to Fluid Dynamics. University Press, Cambridge (1970). Zbl0152.44402MR1744638
- [4] C. Bernardi, Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 212-234. Zbl0678.65003MR1014883
- [5] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, New York (1991). Zbl0788.73002MR1115205
- [6] M. O. Bristeau, R. Glowinski and J. Periaux, Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible flows. Comput. Phys. Rep. 6 (1987) 73-188. MR913308
- [7] P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1977). Zbl0383.65058MR520174
- [8] K. Deimling, Nonlinear Functional Analysis. Springer, Berlin (1985). Zbl0559.47040MR787404
- [9] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer, Berlin (1986). Zbl0585.65077MR851383
- [10] C. Cuvelier and J. M. Driessen, Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169 (1986) 1-26. Zbl0623.76099
- [11] S. F. Kistler and L. E. Scriven, Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system. Internat. J. Numer. Methods Fluids 4 (1984) 207-229. Zbl0555.76026
- [12] P. Knobloch, Variational Crimes in a Finite Element Discretization of 3D Stokes Equations with Nonstandard Boundary Conditions. Preprint MBI-97-4, University of Magdeburg (1997). Zbl0958.76043MR1699239
- [13] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562-580. Zbl0605.65071MR842644
- [14] J. A. Nitsche, On Korn's second inequality. RAIRO Anal. Numér. 15 (1981) 237-248. Zbl0467.35019MR631678
- [15] F. Otto, Die Babuška-Brezzi Bedingung für das Taylor-Hood-Element. Diploma thesis, University of Bonn, Germany (1990).
- [16] H. Saito and L. E. Scriven, Study of Coating Flow by the Finite Element Method. J. Comput. Phys. 42 (1981) 53-76. Zbl0466.76035
- [17] D. Schwabe, Surface-Tension-Driven Flow in Crystal Growth Melts, in Crystal Growth, Properties and Applications 11. Springer, Berlin (1988).
- [18] S. A. Solonnikov and V. E. Ščadilov, On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math. 125 (1973) 186-199. Zbl0313.35063MR350163
- [19] R. Verfürth, A combined conjugate gradient-multigrid algorithm for the numerical solutin of the Stokes problem. IMA J. Numer. Anal. 4 (1984) 441-455. Zbl0563.76028MR768638
- [20] R. Verfürth, Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions. Math. Modelling Numer. Anal. 19 (1985) 461-475. Zbl0579.76024MR807327
- [21] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 (1987) 697-721. Zbl0596.76031MR884296
- [22] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II. Numer. Math. 59 (1991) 615-636. Zbl0739.76034MR1124131
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.