Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition

Eberhard Bänsch; Klaus Deckelnick

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 5, page 923-938
  • ISSN: 0764-583X

How to cite

top

Bänsch, Eberhard, and Deckelnick, Klaus. "Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 923-938. <http://eudml.org/doc/193958>.

@article{Bänsch1999,
author = {Bänsch, Eberhard, Deckelnick, Klaus},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Stokes equations; Navier-Stokes equations; slip boundary conditions; optimal error estimates; velocity; pressure; Sobolev spaces},
language = {eng},
number = {5},
pages = {923-938},
publisher = {Dunod},
title = {Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition},
url = {http://eudml.org/doc/193958},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Bänsch, Eberhard
AU - Deckelnick, Klaus
TI - Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 923
EP - 938
LA - eng
KW - Stokes equations; Navier-Stokes equations; slip boundary conditions; optimal error estimates; velocity; pressure; Sobolev spaces
UR - http://eudml.org/doc/193958
ER -

References

top
  1. [1] E. Bänsch, Local Mesh Refinement in 2 and 3 Dimensions. Impact Comp. Sci. Eng. 3 (1991) 181-191. Zbl0744.65074MR1141298
  2. [2] E. Bänsch and B. Höhn, Numerical treatment of the Navier-Stokes equations with slip-boundary conditions. Preprint 9/ 1998, Universität Freiburg; SIAM J. Sci. Comp. (Submitted). Zbl0970.76056MR1762035
  3. [3] G. K. Batchelor, An Introduction to Fluid Dynamics. University Press, Cambridge (1970). Zbl0152.44402MR1744638
  4. [4] C. Bernardi, Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 212-234. Zbl0678.65003MR1014883
  5. [5] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, New York (1991). Zbl0788.73002MR1115205
  6. [6] M. O. Bristeau, R. Glowinski and J. Periaux, Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible flows. Comput. Phys. Rep. 6 (1987) 73-188. MR913308
  7. [7] P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1977). Zbl0383.65058MR520174
  8. [8] K. Deimling, Nonlinear Functional Analysis. Springer, Berlin (1985). Zbl0559.47040MR787404
  9. [9] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer, Berlin (1986). Zbl0585.65077MR851383
  10. [10] C. Cuvelier and J. M. Driessen, Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169 (1986) 1-26. Zbl0623.76099
  11. [11] S. F. Kistler and L. E. Scriven, Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system. Internat. J. Numer. Methods Fluids 4 (1984) 207-229. Zbl0555.76026
  12. [12] P. Knobloch, Variational Crimes in a Finite Element Discretization of 3D Stokes Equations with Nonstandard Boundary Conditions. Preprint MBI-97-4, University of Magdeburg (1997). Zbl0958.76043MR1699239
  13. [13] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562-580. Zbl0605.65071MR842644
  14. [14] J. A. Nitsche, On Korn's second inequality. RAIRO Anal. Numér. 15 (1981) 237-248. Zbl0467.35019MR631678
  15. [15] F. Otto, Die Babuška-Brezzi Bedingung für das Taylor-Hood-Element. Diploma thesis, University of Bonn, Germany (1990). 
  16. [16] H. Saito and L. E. Scriven, Study of Coating Flow by the Finite Element Method. J. Comput. Phys. 42 (1981) 53-76. Zbl0466.76035
  17. [17] D. Schwabe, Surface-Tension-Driven Flow in Crystal Growth Melts, in Crystal Growth, Properties and Applications 11. Springer, Berlin (1988). 
  18. [18] S. A. Solonnikov and V. E. Ščadilov, On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math. 125 (1973) 186-199. Zbl0313.35063MR350163
  19. [19] R. Verfürth, A combined conjugate gradient-multigrid algorithm for the numerical solutin of the Stokes problem. IMA J. Numer. Anal. 4 (1984) 441-455. Zbl0563.76028MR768638
  20. [20] R. Verfürth, Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions. Math. Modelling Numer. Anal. 19 (1985) 461-475. Zbl0579.76024MR807327
  21. [21] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 (1987) 697-721. Zbl0596.76031MR884296
  22. [22] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II. Numer. Math. 59 (1991) 615-636. Zbl0739.76034MR1124131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.