Displaying similar documents to “Topological derivatives for semilinear elliptic equations”

A penalty method for topology optimization subject to a pointwise state constraint

Samuel Amstutz (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper deals with topology optimization of domains subject to a pointwise constraint on the gradient of the state. To realize this constraint, a class of penalty functionals is introduced and the expression of the corresponding topological derivative is obtained for the Laplace equation in two space dimensions. An algorithm based on these concepts is proposed. It is illustrated by some numerical applications.

A level set method in shape and topology optimization for variational inequalities

Piotr Fulmański, Antoine Laurain, Jean-Francois Scheid, Jan Sokołowski (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

The level set method is used for shape optimization of the energy functional for the Signorini problem. The boundary variations technique is used in order to derive the shape gradients of the energy functional. The conical differentiability of solutions with respect to the boundary variations is exploited. The topology modifications during the optimization process are identified by means of an asymptotic analysis. The topological derivatives of the energy shape functional are employed...