A penalty method for topology optimization subject to a pointwise state constraint

Samuel Amstutz

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 16, Issue: 3, page 523-544
  • ISSN: 1292-8119

Abstract

top
This paper deals with topology optimization of domains subject to a pointwise constraint on the gradient of the state. To realize this constraint, a class of penalty functionals is introduced and the expression of the corresponding topological derivative is obtained for the Laplace equation in two space dimensions. An algorithm based on these concepts is proposed. It is illustrated by some numerical applications.

How to cite

top

Amstutz, Samuel. "A penalty method for topology optimization subject to a pointwise state constraint." ESAIM: Control, Optimisation and Calculus of Variations 16.3 (2010): 523-544. <http://eudml.org/doc/250726>.

@article{Amstutz2010,
abstract = { This paper deals with topology optimization of domains subject to a pointwise constraint on the gradient of the state. To realize this constraint, a class of penalty functionals is introduced and the expression of the corresponding topological derivative is obtained for the Laplace equation in two space dimensions. An algorithm based on these concepts is proposed. It is illustrated by some numerical applications. },
author = {Amstutz, Samuel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Topology optimization; topological derivative; penalty methods; pointwise state constraints; topology optimization},
language = {eng},
month = {7},
number = {3},
pages = {523-544},
publisher = {EDP Sciences},
title = {A penalty method for topology optimization subject to a pointwise state constraint},
url = {http://eudml.org/doc/250726},
volume = {16},
year = {2010},
}

TY - JOUR
AU - Amstutz, Samuel
TI - A penalty method for topology optimization subject to a pointwise state constraint
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/7//
PB - EDP Sciences
VL - 16
IS - 3
SP - 523
EP - 544
AB - This paper deals with topology optimization of domains subject to a pointwise constraint on the gradient of the state. To realize this constraint, a class of penalty functionals is introduced and the expression of the corresponding topological derivative is obtained for the Laplace equation in two space dimensions. An algorithm based on these concepts is proposed. It is illustrated by some numerical applications.
LA - eng
KW - Topology optimization; topological derivative; penalty methods; pointwise state constraints; topology optimization
UR - http://eudml.org/doc/250726
ER -

References

top
  1. R.A. Adams, Sobolev spaces, Pure and Applied Mathematics65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975).  
  2. G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences146. Springer-Verlag, New York (2002).  Zbl0990.35001
  3. G. Allaire, F. Jouve and H. Maillot, Topology optimization for minimum stress design with the homogenization method. Struct. Multidiscip. Optim.28 (2004) 87–98.  Zbl1243.74148
  4. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys.194 (2004) 363–393.  Zbl1136.74368
  5. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern.34 (2005) 59–80.  Zbl1167.49324
  6. S. Amstutz, Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal.49 (2006) 87–108.  Zbl1187.49036
  7. S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys.216 (2006) 573–588.  Zbl1097.65070
  8. J. Appell and P.P. Zabrejko, Nonlinear superposition operators, Cambridge Tracts in Mathematics95. Cambridge University Press, Cambridge (1990).  
  9. M.P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Engrg.71 (1988) 197–224.  Zbl0671.73065
  10. M.P. Bendsøe and O. Sigmund, Topology optimization, Theory, methods and applications. Springer-Verlag, Berlin (2003).  Zbl1059.74001
  11. J.F. Bonnans, J.C. Gilbert, C. Lemaréchal and C.A. Sagastizábal, Numerical optimization, Theoretical and practical aspects. Universitext, Springer-Verlag, Berlin, Second Edition (2006).  Zbl1108.65060
  12. M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim.45 (2006) 1447–1466 (electronic).  Zbl1116.74053
  13. M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods. J. Comput. Phys.194 (2004) 344–362.  Zbl1044.65053
  14. P. Duysinx and M.P. Bendsøe, Topology optimization of continuum structures with local stress constraints. Internat. J. Numer. Methods Engrg.43 (1998) 1453–1478.  Zbl0924.73158
  15. H. Eschenauer, V.V. Kobolev and A. Schumacher, Bubble method for topology and shape optimization of structures. Struct. Optimization8 (1994) 42–51.  
  16. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim.39 (2001) 1756–1778 (electronic).  Zbl0990.49028
  17. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition.  Zbl1042.35002
  18. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics24. Pitman (Advanced Publishing Program), Boston, USA (1985).  Zbl0695.35060
  19. A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques et applications48. Springer-Verlag, Heidelberg (2005).  Zbl1098.49001
  20. M. Hintermüller and K. Kunisch, Stationary optimal control problems with pointwise state constraints (to appear).  Zbl1195.49037
  21. M. Hintermüller and W. Ring, A level set approach for the solution of a state-constrained optimal control problem. Numer. Math.98 (2004) 135–166.  Zbl1059.65057
  22. K. Ito and K. Kunisch, Semi-smooth Newton methods for state-constrained optimal control problems. Systems Control Lett.50 (2003) 221–228.  Zbl1157.49311
  23. C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl.33 (2006) 209–228.  Zbl1103.90072
  24. F. Murat and J. Simon, Étude de problèmes d'optimal design, in Lecture Notes in Computer Sciences41, Springer-Verlag, Berlin (1976) 54–62.  Zbl0334.49013
  25. S.A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals. J. Math. Pures Appl.82 (2003) 125–196.  Zbl1031.35020
  26. J.A. Norato, M.P. Bendsøe, R.B. Haber and D.A. Tortorelli, A topological derivative method for topology optimization. Struct. Multidiscip. Optim.33 (2007) 375–386.  Zbl1245.74074
  27. M. Petzoldt, Regularity results for Laplace interface problems in two dimensions. Z. Anal. Anwendungen20 (2001) 431–455.  Zbl1165.35333
  28. J.-J. Rückmann and J.A. Gómez, On generalized semi-infinite programming. Top14 (2006) 1–59.  Zbl1111.90114
  29. J.J. Rückmann and A. Shapiro, First-order optimality conditions in generalized semi-infinite programming. J. Optim. Theory Appl.101 (1999) 677–691.  Zbl0956.90055
  30. G. Savaré, Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal.152 (1998) 176–201.  Zbl0889.35018
  31. J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim.2 (1980) 649–687.  Zbl0471.35077
  32. J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization. SIAM J. Control Optim.37 (1999) 1251–1272 (electronic).  Zbl0940.49026
  33. J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization – Shape sensitivity analysis, Springer Series in Computational Mathematics16. Springer-Verlag, Berlin (1992).  Zbl0761.73003
  34. G. Still, Generalized semi-infinite programming: numerical aspects. Optimization49 (2001) 223–242.  Zbl1039.90083
  35. M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg.192 (2003) 227–246.  Zbl1083.74573

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.