Displaying similar documents to “Motion planning and feedback control for a unicycle in a way point following task: The VFO approach”

Trajectory tracking for a mobile robot with skid-slip compensation in the Vector-Field-Orientation control system

Maciej Michałek, Piotr Dutkiewicz, Marcin Kiełczewski, Dariusz Pazderski (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

The article is devoted to a motion control problem for a differentially driven mobile robot in the task of trajectory tracking in the presence of skid-slip effects. The kinematic control concept presented in the paper is the Vector Field Orientation (VFO) feedback approach with a nonlinear feed-forward skid-slip influence compensation scheme. The VFO control law guarantees asymptotic convergence of the position tracking error to zero in spite of the disturbing influence of skid-slip...

A learning paradigm for motion control of mobile manipulators

Foudil Abdessemed, Eric Monacelli, Khier Benmahammed (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

Motion control of a mobile manipulator is discussed. The objective is to allow the end-effector to track a given trajectory in a fixed world frame. The motion of the platform and that of the manipulator are coordinated by a neural network which is a kind of graph designed from the kinematic model of the system. A learning paradigm is used to produce the required reference variables for each of the mobile platform and the robot manipulator for an overall coordinate behavior. Simulation...

On path following control of nonholonomic mobile manipulators

Alicja Mazur, Dawid Szakiel (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper describes the problem of designing control laws for path following robots, including two types of nonholonomic mobile manipulators. Due to a cascade structure of the motion equation, a backstepping procedure is used to achieve motion along a desired path. The control algorithm consists of two simultaneously working controllers: the kinematic controller, solving motion constraints, and the dynamic controller, preserving an appropriate coordination between both subsystems of...

The problems of collision avoidance at sea in the formulation of complex motion principles

Bogdan Żak (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents a mathematical model of a collision situation for objects afloat based on the rules of a multiple complex motion. It also contains an analysis of the presented model and draws some conclusions from it. The method used to determine the minimum-time control of ships in a situation of colliding with other objects afloat is presented for a mathematical model of a collision situation. It also includes the results of a simulation study conducted by means of this method....

Robust quasi NID aircraft 3D flight control under sensor noise

Marian J. Błachuta, Valery D. Yurkevich, Konrad Wojciechowski (1999)

Kybernetika

Similarity:

In the paper the design of an aircraft motion controller based on the Dynamic Contraction Method is presented. The control task is formulated as a tracking problem for Euler angles, where the desired decoupled output transients are accomplished under assumption of high-level, high-frequency sensor noise and incomplete information about varying parameters of the system and external disturbances. The resulting controller has a simple form of a combination of a low-order linear dynamical...