Displaying similar documents to “On path following control of nonholonomic mobile manipulators”

Trajectory tracking for a mobile robot with skid-slip compensation in the Vector-Field-Orientation control system

Maciej Michałek, Piotr Dutkiewicz, Marcin Kiełczewski, Dariusz Pazderski (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

The article is devoted to a motion control problem for a differentially driven mobile robot in the task of trajectory tracking in the presence of skid-slip effects. The kinematic control concept presented in the paper is the Vector Field Orientation (VFO) feedback approach with a nonlinear feed-forward skid-slip influence compensation scheme. The VFO control law guarantees asymptotic convergence of the position tracking error to zero in spite of the disturbing influence of skid-slip...

On directional change and anti-windup compensation in multivariable control systems

Dariusz Horla (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents a novel description of the interplay between the windup phenomenon and directional change in controls for multivariable systems (including plants with an uneven number of inputs and outputs), usually omitted in the literature. The paper also proposes a new classification of anti-windup compensators with respect to the method of generating the constrained control signal.

Modelling and control of an omnidirectional mobile manipulator

Salima Djebrani, Abderraouf Benali, Foudil Abdessemed (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

A new approach to control an omnidirectional mobile manipulator is developed. The robot is considered to be an individual agent aimed at performing robotic tasks described in terms of a displacement and a force interaction with the environment. A reactive architecture and impedance control are used to ensure reliable task execution in response to environment stimuli. The mechanical structure of our holonomic mobile manipulator is built of two joint manipulators mounted on a holonomic...

Nonlinear controller design of a ship autopilot

Mirosław Tomera (2010)

International Journal of Applied Mathematics and Computer Science

Similarity:

The main goal here is to design a proper and efficient controller for a ship autopilot based on the sliding mode control method. A hydrodynamic numerical model of CyberShip II including wave effects is applied to simulate the ship autopilot system by using time domain analysis. To compare the results similar research was conducted with the PD controller, which was adapted to the autopilot system. The differences in simulation results between two controllers are analyzed by a cost function...