Displaying similar documents to “Equivalence of Lagrangian germs in the presence of a surface”

On implicit Lagrangian differential systems

S. Janeczko (2000)

Annales Polonici Mathematici

Similarity:

Let (P,ω) be a symplectic manifold. We find an integrability condition for an implicit differential system D' which is formed by a Lagrangian submanifold in the canonical symplectic tangent bundle (TP,ὡ).

Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold.

Jan Kurek, Wlodzimierz M. Mikulski (2006)

Extracta Mathematicae

Similarity:

We describe all canonical 2-forms Λ(ω) on the r-th order tangent bundle TM = J (;M) of a symplectic manifold (M, ω). As a corollary we deduce that all canonical symplectic structures Λ(ω) on TM over a symplectic manifold (M, ω) are of the form Λ(ω) = Σ αω for all real numbers α with α ≠ 0, where ω is the (k)-lift (in the sense of A. Morimoto) of ω to TM.

Invariant properties of the generalized canonical mappings

Stanisław Janeczko (1999)

Banach Center Publications

Similarity:

One of the fundamental objectives of the theory of symplectic singularities is to study the symplectic invariants appearing in various geometrical contexts. In the paper we generalize the symplectic cohomological invariant to the class of generalized canonical mappings. We analyze the global structure of Lagrangian Grassmannian in the product symplectic space and describe the local properties of generic symplectic relations.