Displaying similar documents to “On Jordan models of C 0 -contractions”

A structure theory for Jordan H * -pairs

A. J. Calderón Martín, C. Martín González (2004)

Bollettino dell'Unione Matematica Italiana

Similarity:

Jordan H * -pairs appear, in a natural way, in the study of Lie H * -triple systems ([3]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification of Lie H * -triple systems is reduced to prove the existence of certain L * -algebra envelopes, and it is also shown in [3] that we can associate topologically simple nonquadratic Jordan H * -pairs to a wide class of Lie H * -triple systems and then the above envelopes can be obtained from a suitable classification, in terms of associative...

On the range of a normal Jordan * -derivation

Lajos Molnár (1994)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this note, by means of the spectrum of the generating operator, we characterize the self-adjointness and closedness of the range of a normal and a self-adjoint Jordan *-derivation, respectively.

Hilbert spaces of analytic functions of infinitely many variables

O. V. Lopushansky, A. V. Zagorodnyuk (2003)

Annales Polonici Mathematici

Similarity:

We study spaces of analytic functions generated by homogeneous polynomials from the dual space to the symmetric Hilbertian tensor product of a Hilbert space. In particular, we introduce an analogue of the classical Hardy space H² on the Hilbert unit ball and investigate spectral decomposition of unitary operators on this space. Also we prove a Wiener-type theorem for an algebra of analytic functions on the Hilbert unit ball.

The spectrally bounded linear maps on operator algebras

Jianlian Cui, Jinchuan Hou (2002)

Studia Mathematica

Similarity:

We show that every spectrally bounded linear map Φ from a Banach algebra onto a standard operator algebra acting on a complex Banach space is square-zero preserving. This result is used to show that if Φ₂ is spectrally bounded, then Φ is a homomorphism multiplied by a nonzero complex number. As another application to the Hilbert space case, a classification theorem is obtained which states that every spectrally bounded linear bijection Φ from ℬ(H) onto ℬ(K), where H and K are infinite-dimensional...

Analytic properties of the spectrum in Banach Jordan Systems.

Gerald Hessenberger (1996)

Collectanea Mathematica

Similarity:

For Banach Jordan algebras and pairs the spectrum is proved to be related to the spectrum in a Banach algebra. Consequently, it is an analytic multifunction, upper semicontinuous with a dense G delta-set of points of continuity, and the scarcity theorem holds.

Distinguishing Jordan polynomials by means of a single Jordan-algebra norm

A. Moreno Galindo (1997)

Studia Mathematica

Similarity:

For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra M ( ) with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on M ( ) . This analytic determination of Jordan polynomials improves the one recently obtained in [5].