A note on lacunary approximation on [-1,1]
S. Zhou (1993)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
S. Zhou (1993)
Colloquium Mathematicae
Similarity:
S. Zhou (1998)
Colloquium Mathematicae
Similarity:
We construct a piecewise differentiable function that is not piecewise analytic and satisfies a Jackson type estimate for approximation by Lagrange interpolating polynomials associated with the extremal points of the Chebyshev polynomials.
Guanzhen Zhou, Songping Zhou (1999)
Colloquium Mathematicae
Similarity:
We prove that, for a sequence of positive numbers δ(n), if as , to guarantee that the modified Szász-Mirakjan operators converge to f(x) at every point, f must be identically zero.
Martina Šimůnková (2001)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator on is proved. In this note there is shown that in the cases , no other transforms of this kind exist and for case , all such transforms are described.
Gen Yamamoto (2000)
Acta Arithmetica
Similarity:
1. Introduction. Let p be a prime number and the ring of p-adic integers. Let k be a finite extension of the rational number field ℚ, a -extension of k, the nth layer of , and the p-Sylow subgroup of the ideal class group of . Iwasawa proved the following well-known theorem about the order of : Theorem A (Iwasawa). Let be a -extension and the p-Sylow subgroup of the ideal class group of , where is the th layer of . Then there exist integers , , , and n₀ ≥ 0...
Simeon Reich, Alexander J. Zaslavski (2003)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Let be a nonempty compact subset of a Banach space and denote by the family of all nonempty bounded closed convex subsets of . We endow with the Hausdorff metric and show that there exists a set such that its complement is -porous and such that for each and each , the set of solutions of the best approximation problem , , is nonempty and compact, and each minimizing sequence has a convergent subsequence.