Displaying similar documents to “On full Suslin trees”

On what I do not understand (and have something to say): Part I

Saharon Shelah (2000)

Fundamenta Mathematicae

Similarity:

This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdotes and opinions. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history...

Term Context

Grzegorz Bancerek (2014)

Formalized Mathematics

Similarity:

Two construction functors: simple term with a variable and compound term with an operation and argument terms and schemes of term induction are introduced. The degree of construction as a number of used operation symbols is defined. Next, the term context is investigated. An x-context is a term which includes a variable x once only. The compound term is x-context iff the argument terms include an x-context once only. The context induction is shown and used many times. As a key concept,...

Combinatorial trees in Priestley spaces

Richard N. Ball, Aleš Pultr, Jiří Sichler (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting n -crowns with n 3 does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context.

Weak variants of Martin's Axiom

J. Barnett (1992)

Fundamenta Mathematicae

Similarity:

Examples exist of smooth maps on the boundary of a smooth manifold M which allow continuous extensions over M without fixed points but no such smooth extensions. Such maps are studied here in more detail. They have a minimal fixed point set when all transversally fixed maps in their homotopy class are considered. Therefore we introduce a Nielsen fixed point theory for transversally fixed maps on smooth manifolds without or with boundary, and use it to calculate the minimum number of...

On a problem of Steve Kalikow

Saharon Shelah (2000)

Fundamenta Mathematicae

Similarity:

The Kalikow problem for a pair (λ,κ) of cardinal numbers,λ > κ (in particular κ = 2) is whether we can map the family of ω-sequences from λ to the family of ω-sequences from κ in a very continuous manner. Namely, we demand that for η,ν ∈ ω we have: η, ν are almost equal if and only if their images are. We show consistency of the negative answer, e.g., for ω but we prove it for smaller cardinals. We indicate a close connection with the free subset property and its variants. ...