p -spaces of harmonic functions

Linda Lumer-Naïm

Annales de l'institut Fourier (1967)

  • Volume: 17, Issue: 2, page 425-469
  • ISSN: 0373-0956

How to cite

top

Lumer-Naïm, Linda. "${\mathcal {H}}^p$-spaces of harmonic functions." Annales de l'institut Fourier 17.2 (1967): 425-469. <http://eudml.org/doc/73940>.

@article{Lumer1967,
author = {Lumer-Naïm, Linda},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {425-469},
publisher = {Association des Annales de l'Institut Fourier},
title = {$\{\mathcal \{H\}\}^p$-spaces of harmonic functions},
url = {http://eudml.org/doc/73940},
volume = {17},
year = {1967},
}

TY - JOUR
AU - Lumer-Naïm, Linda
TI - ${\mathcal {H}}^p$-spaces of harmonic functions
JO - Annales de l'institut Fourier
PY - 1967
PB - Association des Annales de l'Institut Fourier
VL - 17
IS - 2
SP - 425
EP - 469
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73940
ER -

References

top
  1. [1] H. BAUER, Axiomatische Behandlung des Dirichletschen Problems fur elliptische und parabolische Differential gleichungen, Math. Ann., 146 (1962), 1-59. Zbl0107.08003MR26 #1612
  2. [2] M. BRELOT, Lectures on potential theory, Tata Institute of Fundamental Research, 19 (1960). Zbl0098.06903MR22 #9749
  3. [3] M. BRELOT, Intégrabilité uniforme. Quelques applications à la théorie du potentiel, Séminaire théorie du Potentiel, Paris, 6 (1961-1962). Zbl0115.32201
  4. [4] M. BRELOT, Axiomatique des fonctions harmoniques, Séminaire Mathématiques Supérieures, Université de Montréal, Eté 1965. 
  5. [5] J. L. DOOB, Probability methods applied to the first boundary value problem, Third Berkeley Symp. on Math. Statistics and Probability, 2 (1954-1955), 49-80. Zbl0074.09101MR18,941a
  6. [6] J. L. DOOB, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. de France, 85 (1957), 431-458. Zbl0097.34004MR22 #844
  7. [7] J. L. DOOB, A non probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier, 9 (1959), 295-299. Zbl0095.08203MR22 #8233
  8. [8] J. L. DOOB, Boundary properties of functions with finite Dirichlet integral, Ann. Inst. Fourier, 12 (1962), 573-621. Zbl0121.08604MR30 #3992
  9. [9] J. L. DOOB , Some classical function theory theorems and their modern versions, Colloque de Potentiel, Paris-Orsay, 1964, and Ann. Inst. Fourier, 15. 1 (1965), 113-136. Zbl0154.07503MR34 #2923
  10. [10] L. GARDING and L. HORMANDER, Strongly subharmonic functions, Math. scand., 15 (1964), 93-96. Zbl0146.35403
  11. [11] K. GOWRISANKARAN, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier, 13, 2 (1963), 307-356. Zbl0134.09503MR29 #1350
  12. [12] K. GOWRISANKARAN, Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, 16, 2 (1967). Zbl0145.15103MR35 #1802
  13. [13] R. M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  14. [14] K. HOFMANN, Banach spaces of analytic functions, Prentice-Hall (1962). Zbl0117.34001
  15. [15] P. A. LŒB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16, 2 (1967). Zbl0172.15101
  16. [16] P. A. LŒB and B. WALSH, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15, 2 (1965), 597-600. Zbl0132.33802MR32 #7773
  17. [17] P. A. LŒB and B. WALSH, Decomposition of functions and the classification of spaces in axiomatic potential theory, Notices AMS, January 1966, 146. Zbl0144.15503
  18. [18] L. LUMER-NAIM, Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Notices AMS, april 1965, 355. 
  19. [19] L. LUMER-NAIM, Hp spaces of harmonic functions, Notices AMS, June 1966, 481. 
  20. [20] W. A. LUXEMBURG, Banach function spaces, Thesis, Van Gorcum, Assen, Netherlands. Zbl0068.09204
  21. [21] R. S. MARTIN, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. Zbl0025.33302MR2,292hJFM67.0343.03
  22. [22] M. PARREAU, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier, 3 (1951), 103-197. Zbl0047.32004MR14,263c
  23. [23] E. M. STEIN and G. WEISS, On the theory of harmonic functions of several variables, I, Acta Math., 103 (1960), 25-62. Zbl0097.28501MR22 #12315

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.