p -spaces of harmonic functions

Linda Lumer-Naïm

Annales de l'institut Fourier (1967)

  • Volume: 17, Issue: 2, page 425-469
  • ISSN: 0373-0956

How to cite

top

Lumer-Naïm, Linda. "${\mathcal {H}}^p$-spaces of harmonic functions." Annales de l'institut Fourier 17.2 (1967): 425-469. <http://eudml.org/doc/73940>.

@article{Lumer1967,
author = {Lumer-Naïm, Linda},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {425-469},
publisher = {Association des Annales de l'Institut Fourier},
title = {$\{\mathcal \{H\}\}^p$-spaces of harmonic functions},
url = {http://eudml.org/doc/73940},
volume = {17},
year = {1967},
}

TY - JOUR
AU - Lumer-Naïm, Linda
TI - ${\mathcal {H}}^p$-spaces of harmonic functions
JO - Annales de l'institut Fourier
PY - 1967
PB - Association des Annales de l'Institut Fourier
VL - 17
IS - 2
SP - 425
EP - 469
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73940
ER -

References

top
  1. [1] H. BAUER, Axiomatische Behandlung des Dirichletschen Problems fur elliptische und parabolische Differential gleichungen, Math. Ann., 146 (1962), 1-59. Zbl0107.08003MR26 #1612
  2. [2] M. BRELOT, Lectures on potential theory, Tata Institute of Fundamental Research, 19 (1960). Zbl0098.06903MR22 #9749
  3. [3] M. BRELOT, Intégrabilité uniforme. Quelques applications à la théorie du potentiel, Séminaire théorie du Potentiel, Paris, 6 (1961-1962). Zbl0115.32201
  4. [4] M. BRELOT, Axiomatique des fonctions harmoniques, Séminaire Mathématiques Supérieures, Université de Montréal, Eté 1965. 
  5. [5] J. L. DOOB, Probability methods applied to the first boundary value problem, Third Berkeley Symp. on Math. Statistics and Probability, 2 (1954-1955), 49-80. Zbl0074.09101MR18,941a
  6. [6] J. L. DOOB, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. de France, 85 (1957), 431-458. Zbl0097.34004MR22 #844
  7. [7] J. L. DOOB, A non probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier, 9 (1959), 295-299. Zbl0095.08203MR22 #8233
  8. [8] J. L. DOOB, Boundary properties of functions with finite Dirichlet integral, Ann. Inst. Fourier, 12 (1962), 573-621. Zbl0121.08604MR30 #3992
  9. [9] J. L. DOOB , Some classical function theory theorems and their modern versions, Colloque de Potentiel, Paris-Orsay, 1964, and Ann. Inst. Fourier, 15. 1 (1965), 113-136. Zbl0154.07503MR34 #2923
  10. [10] L. GARDING and L. HORMANDER, Strongly subharmonic functions, Math. scand., 15 (1964), 93-96. Zbl0146.35403
  11. [11] K. GOWRISANKARAN, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier, 13, 2 (1963), 307-356. Zbl0134.09503MR29 #1350
  12. [12] K. GOWRISANKARAN, Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, 16, 2 (1967). Zbl0145.15103MR35 #1802
  13. [13] R. M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  14. [14] K. HOFMANN, Banach spaces of analytic functions, Prentice-Hall (1962). Zbl0117.34001
  15. [15] P. A. LŒB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16, 2 (1967). Zbl0172.15101
  16. [16] P. A. LŒB and B. WALSH, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15, 2 (1965), 597-600. Zbl0132.33802MR32 #7773
  17. [17] P. A. LŒB and B. WALSH, Decomposition of functions and the classification of spaces in axiomatic potential theory, Notices AMS, January 1966, 146. Zbl0144.15503
  18. [18] L. LUMER-NAIM, Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Notices AMS, april 1965, 355. 
  19. [19] L. LUMER-NAIM, Hp spaces of harmonic functions, Notices AMS, June 1966, 481. 
  20. [20] W. A. LUXEMBURG, Banach function spaces, Thesis, Van Gorcum, Assen, Netherlands. Zbl0068.09204
  21. [21] R. S. MARTIN, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. Zbl0025.33302MR2,292hJFM67.0343.03
  22. [22] M. PARREAU, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier, 3 (1951), 103-197. Zbl0047.32004MR14,263c
  23. [23] E. M. STEIN and G. WEISS, On the theory of harmonic functions of several variables, I, Acta Math., 103 (1960), 25-62. Zbl0097.28501MR22 #12315

NotesEmbed ?

top

You must be logged in to post comments.