Displaying similar documents to “Extension of group-valued set functions defined on lattices”

On duality of submodule lattices

Gábor Czédli, Géza Takách (2000)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.

First order topology

C.W. Henson, C.G. Jockusch, Jr., L.A. Rubel, G. Takeuti

Similarity:

CONTENTS§ 1. Introduction.................................................................................................... 5§ 2. Basic development............................................................................................... 8§ 3. Some elementarily equivalent spaces............................................................. 11§ 4. Elementary characterizations of some familiar spaces................................ 13§ 5. First order properties of C(X).................................................................................

Semimodularity in lower continuous strongly dually atomic lattices

Andrzej Walendziak (1996)

Archivum Mathematicum

Similarity:

For lattices of finite length there are many characterizations of semimodularity (see, for instance, Grätzer [3] and Stern [6]–[8]). The present paper deals with some conditions characterizing semimodularity in lower continuous strongly dually atomic lattices. We give here a generalization of results of paper [7].

On M-operators of q-lattices

Radomír Halaš (2002)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

It is well known that every complete lattice can be considered as a complete lattice of closed sets with respect to appropriate closure operator. The theory of q-lattices as a natural generalization of lattices gives rise to a question whether a similar statement is true in the case of q-lattices. In the paper the so-called M-operators are introduced and it is shown that complete q-lattices are q-lattices of closed sets with respect to M-operators.

A characterization of uninorms on bounded lattices via closure and interior operators

Gül Deniz Çayli (2023)

Kybernetika

Similarity:

Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms. ...

Representation of uni-nullnorms and null-uninorms on bounded lattices

Yi-Qun Zhang, Ya-Ming Wang, Hua-Wen Liu (2024)

Kybernetika

Similarity:

In this paper, we present the representation for uni-nullnorms with disjunctive underlying uninorms on bounded lattices. It is shown that our method can cover the representation of nullnorms on bounded lattices and some of existing construction methods for uni-nullnorms on bounded lattices. Illustrative examples are presented simultaneously. In addition, the representation of null-uninorms with conjunctive underlying uninorms on bounded lattices is obtained dually.

Hypersubstitutions in orthomodular lattices

Ivan Chajda, Helmut Länger (2001)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

It is shown that in the variety of orthomodular lattices every hypersubstitution respecting all absorption laws either leaves the lattice operations unchanged or interchanges join and meet. Further, in a variety of lattices with an involutory antiautomorphism a semigroup generated by three involutory hypersubstitutions is described.