The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A characterization of middle graphs and a matroid associated with middle graphs of hypergraphs”

Simplicial and nonsimplicial complete subgraphs

Terry A. McKee (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Define a complete subgraph Q to be simplicial in a graph G when Q is contained in exactly one maximal complete subgraph ('maxclique') of G; otherwise, Q is nonsimplicial. Several graph classes-including strong p-Helly graphs and strongly chordal graphs-are shown to have pairs of peculiarly related new characterizations: (i) for every k ≤ 2, a certain property holds for the complete subgraphs that are in k or more maxcliques of G, and (ii) in every induced subgraph H of G, that...

Pₘ-saturated bipartite graphs with minimum size

Aneta Dudek, A. Paweł Wojda (2004)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is said to be H-saturated if G is H-free i.e., (G has no subgraph isomorphic to H) and adding any new edge to G creates a copy of H in G. In 1986 L. Kászonyi and Zs. Tuza considered the following problem: for given m and n find the minimum size sat(n;Pₘ) of Pₘ-saturated graph of order n. They gave the number sat(n;Pₘ) for n big enough. We deal with similar problem for bipartite graphs.

Bipartite graphs that are not circle graphs

André Bouchet (1999)

Annales de l'institut Fourier

Similarity:

The following result is proved: if a bipartite graph is not a circle graph, then its complement is not a circle graph. The proof uses Naji’s characterization of circle graphs by means of a linear system of equations with unknowns in GF ( 2 ) . At the end of this short note I briefly recall the work of François Jaeger on circle graphs.

The edge C₄ graph of some graph classes

Manju K. Menon, A. Vijayakumar (2010)

Discussiones Mathematicae Graph Theory

Similarity:

The edge C₄ graph of a graph G, E₄(G) is a graph whose vertices are the edges of G and two vertices in E₄(G) are adjacent if the corresponding edges in G are either incident or are opposite edges of some C₄. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C₄ graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of E₄(G). It is shown that for any graph G without isolated vertices,...