Displaying similar documents to “ Z p -cohomology manifold with no Z p -resolution”

Motivic cohomology and unramified cohomology of quadrics

Bruno Kahn, R. Sujatha (2000)

Journal of the European Mathematical Society

Similarity:

This is the last of a series of three papers where we compute the unramified cohomology of quadrics in degree up to 4. Complete results were obtained in the two previous papers for quadrics of dimension 4 and 11 . Here we deal with the remaining dimensions between 5 and 10. We also prove that the unramified cohomology of Pfister quadrics with divisible coefficients always comes from the ground field, and that the same holds for their unramified Witt rings. We apply these results to real...

Nash cohomology of smooth manifolds

W. Kucharz (2005)

Annales Polonici Mathematici

Similarity:

A Nash cohomology class on a compact Nash manifold is a mod 2 cohomology class whose Poincaré dual homology class can be represented by a Nash subset. We find a canonical way to define Nash cohomology classes on an arbitrary compact smooth manifold M. Then the Nash cohomology ring of M is compared to the ring of algebraic cohomology classes on algebraic models of M. This is related to three conjectures concerning algebraic cohomology classes.

Cutting description of trivial 1-cohomology

Andrzej Czarnecki (2014)

Annales Polonici Mathematici

Similarity:

A characterisation of trivial 1-cohomology, in terms of some connectedness condition, is presented for a broad class of metric spaces.

Algebras of the cohomology operations in some cohomology theories

A. Jankowski

Similarity:

Contents0. Introduction............................................................................................................................................. 51. Preliminaries.......................................................................................................................................... 62. Generalized cohomology theories with a coefficient group Z p .............................................. 83. Cohomology theory BP* ( , Z p )........................................................................................................

Obstructions to generic embeddings

Judith Brinkschulte, C. Denson Hill, Mauro Nacinovich (2002)

Annales de l’institut Fourier

Similarity:

Let F be a relatively closed subset of a Stein manifold. We prove that the ¯ -cohomology groups of Whitney forms on F and of currents supported on F are either zero or infinite dimensional. This yields obstructions of the existence of a generic C R embedding of a CR manifold M into any open subset of any Stein manifold, namely by the nonvanishing but finite dimensionality of some intermediate ¯ M -cohomology groups.

Double complexes and vanishing of Novikov cohomology

Hüttemann, Thomas (2011)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: Primary 18G35; Secondary 55U15. We consider non-standard totalisation functors for double complexes, involving left or right truncated products. We show how properties of these imply that the algebraic mapping torus of a self map h of a cochain complex of finitely presented modules has trivial negative Novikov cohomology, and has trivial positive Novikov cohomology provided h is a quasi-isomorphism. As an application we obtain a new...

The BIC of a singular foliation defined by an abelian group of isometries

Martintxo Saralegi-Aranguren, Robert Wolak (2006)

Annales Polonici Mathematici

Similarity:

We study the cohomology properties of the singular foliation ℱ determined by an action Φ: G × M → M where the abelian Lie group G preserves a riemannian metric on the compact manifold M. More precisely, we prove that the basic intersection cohomology * p ̅ ( M / ) is finite-dimensional and satisfies the Poincaré duality. This duality includes two well known situations: ∙ Poincaré duality for basic cohomology (the action Φ is almost free). ∙ Poincaré duality for intersection cohomology (the group...

A geometric description of differential cohomology

Ulrich Bunke, Matthias Kreck, Thomas Schick (2010)

Annales mathématiques Blaise Pascal

Similarity:

In this paper we give a geometric cobordism description of differential integral cohomology. The main motivation to consider this model (for other models see [, , , ]) is that it allows for simple descriptions of both the cup product and the integration. In particular it is very easy to verify the compatibilty of these structures. We proceed in a similar way in the case of differential cobordism as constructed in []. There the starting point was Quillen’s cobordism description of singular...