Rigid Cohomology and de Rham-Witt Complexes

Pierre Berthelot

Rendiconti del Seminario Matematico della Università di Padova (2012)

  • Volume: 128, page 287-344
  • ISSN: 0041-8994

How to cite

top

Berthelot, Pierre. "Rigid Cohomology and de Rham-Witt Complexes." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 287-344. <http://eudml.org/doc/275119>.

@article{Berthelot2012,
author = {Berthelot, Pierre},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {rigid cohomology; crystalline cohomology; de Rham-Witt complex},
language = {eng},
pages = {287-344},
publisher = {Seminario Matematico of the University of Padua},
title = {Rigid Cohomology and de Rham-Witt Complexes},
url = {http://eudml.org/doc/275119},
volume = {128},
year = {2012},
}

TY - JOUR
AU - Berthelot, Pierre
TI - Rigid Cohomology and de Rham-Witt Complexes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 287
EP - 344
LA - eng
KW - rigid cohomology; crystalline cohomology; de Rham-Witt complex
UR - http://eudml.org/doc/275119
ER -

References

top
  1. [1] P. Berthelot, Géométrie rigide et cohomologie des variétés algébriques de caractéristique p , Journées d’Analyse p -adique (Luminy, 1982), in Introduction aux cohomologies p -adiques, Mémoires Soc. Math. France 23 (1986), pp. 7–32. Zbl0606.14017MR865810
  2. [2] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, première partie, Prépublication IRMAR 96-03, Université de Rennes (1996). 
  3. [3] P. Berthelot, -modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4) 29 (1996), pp. 185–272. Zbl0886.14004MR1373933
  4. [4] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, avec un appendice par A. J. de Jong, Invent. Math.128 (1997), pp. 329–377. Zbl0908.14005MR1440308
  5. [5] P. Berthelot - S. Bloch - H. Esnault, On Witt vector cohomology for singular varieties, Compositio Math.143 (2007), pp. 363–392. Zbl1213.14040MR2309991
  6. [6] P. Berthelot - L. Breen - W. Messing, Théorie de Dieudonné cristalline II, Lecture Notes in Mathematics 930 (1980), Springer-Verlag. Zbl0516.14015MR667344
  7. [7] P. Berthelot - A. Ogus, Notes on Crystalline Cohomology, Mathematical Notes 21 (1978), Princeton University Press. Zbl0383.14010MR491705
  8. [8] S. Bloch, Algebraic K -theory and crystalline cohomology, Publ. Math. IHÉS47 (1977), pp. 187–268. Zbl0388.14010MR488288
  9. [9] N. Bourbaki, Topologie générale, Chapitres 1 à 4 (1971), Springer. 
  10. [10] R. Crew, Crystalline cohomology of singular varieties, in Geometric Aspects of Dwork Theory I (2004), pp. 451–462, De Gruyter. Zbl1084.14511MR2099076
  11. [11] J.-Y. Étesse, Complexe de de Rham-Witt à coefficients dans un cristal, Compositio Math.66 (1988), pp. 57–120. Zbl0708.14013MR937988
  12. [12] A. Grothendieck, Éléments de géométrie algébrique, Publ. Math. IHÉS11 (1961), pp. 5–167. Zbl0122.16102
  13. [13] R. Hartshorne, On the de Rham cohomology of algebraic varieties, Publ. Math. IHÉS45 (1975), pp. 5–99. Zbl0326.14004MR432647
  14. [14] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979), pp. 501–661. Zbl0436.14007MR565469
  15. [15] N. Katz, Nilpotent connections and the monodromy theorem: applications of a result of Turritin, Publ. Math. IHÉS39 (1970), pp. 175–232. Zbl0221.14007MR291177
  16. [16] N. Katz, On a theorem of Ax, Amer. J. Math.93 (1971), pp. 485–499. Zbl0237.12012MR288099
  17. [17] R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionnentheorie, Invent. Math.2 (1967), pp. 256–273. Zbl0202.20201MR210949
  18. [18] A. Langer - T. Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu3 (2004), pp. 231–314. Zbl1100.14506MR2055710
  19. [19] B. Le Stum, Rigid cohomology, Cambridge Tracts in Math. 172, Cambridge Univ. Press (2007). Zbl1131.14001MR2358812
  20. [20] Y. Nakkajima, Weight filtration and slope filtration on the rigid cohomology of a variety, to appear in Mémoires Soc. Math. France. Zbl1303.14032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.