Obstructions to generic embeddings

Judith Brinkschulte[1]; C. Denson Hill[2]; Mauro Nacinovich[3]

  • [1] Chalmers University of Technology & Göteborg University, Department of Mathematics, Göteborg (Suède)
  • [2] SUNY at Stony Brook, Department of Mathematics, Stony Brook NY 11794 (USA)
  • [3] Università di Roma "Tor Vergaga", Dipartimento di Matematica, Via della Ricerca Scientifica, 00133 Roma (Italie)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 6, page 1785-1792
  • ISSN: 0373-0956

Abstract

top
Let F be a relatively closed subset of a Stein manifold. We prove that the ¯ -cohomology groups of Whitney forms on F and of currents supported on F are either zero or infinite dimensional. This yields obstructions of the existence of a generic C R embedding of a CR manifold M into any open subset of any Stein manifold, namely by the nonvanishing but finite dimensionality of some intermediate ¯ M -cohomology groups.

How to cite

top

Brinkschulte, Judith, Denson Hill, C., and Nacinovich, Mauro. "Obstructions to generic embeddings." Annales de l’institut Fourier 52.6 (2002): 1785-1792. <http://eudml.org/doc/116027>.

@article{Brinkschulte2002,
abstract = {Let $F$ be a relatively closed subset of a Stein manifold. We prove that the $\bar\{\partial \}$-cohomology groups of Whitney forms on $F$ and of currents supported on $F$ are either zero or infinite dimensional. This yields obstructions of the existence of a generic $CR$ embedding of a CR manifold $M$ into any open subset of any Stein manifold, namely by the nonvanishing but finite dimensionality of some intermediate $\bar\{\partial \}_M$-cohomology groups.},
affiliation = {Chalmers University of Technology & Göteborg University, Department of Mathematics, Göteborg (Suède); SUNY at Stony Brook, Department of Mathematics, Stony Brook NY 11794 (USA); Università di Roma "Tor Vergaga", Dipartimento di Matematica, Via della Ricerca Scientifica, 00133 Roma (Italie)},
author = {Brinkschulte, Judith, Denson Hill, C., Nacinovich, Mauro},
journal = {Annales de l’institut Fourier},
keywords = {$\bar\{\partial \}$-operator; tangential $CR$ operator; embedding of $CR$ manifolds; d-bar operator; tangential CR operator; embedding of CR manifolds},
language = {eng},
number = {6},
pages = {1785-1792},
publisher = {Association des Annales de l'Institut Fourier},
title = {Obstructions to generic embeddings},
url = {http://eudml.org/doc/116027},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Brinkschulte, Judith
AU - Denson Hill, C.
AU - Nacinovich, Mauro
TI - Obstructions to generic embeddings
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1785
EP - 1792
AB - Let $F$ be a relatively closed subset of a Stein manifold. We prove that the $\bar{\partial }$-cohomology groups of Whitney forms on $F$ and of currents supported on $F$ are either zero or infinite dimensional. This yields obstructions of the existence of a generic $CR$ embedding of a CR manifold $M$ into any open subset of any Stein manifold, namely by the nonvanishing but finite dimensionality of some intermediate $\bar{\partial }_M$-cohomology groups.
LA - eng
KW - $\bar{\partial }$-operator; tangential $CR$ operator; embedding of $CR$ manifolds; d-bar operator; tangential CR operator; embedding of CR manifolds
UR - http://eudml.org/doc/116027
ER -

References

top
  1. A. Andreotti, G. Fredricks, M. Nacinovich, On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Sup. Pisa 8 (1981), 365-404 Zbl0482.35061MR634855
  2. A. Andreotti, C.D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Sc. Norm. Sup. Pisa 26 (1972), 299-324 Zbl0256.32006MR460724
  3. A. Andreotti, C.D. Hill, S. Lojasiewicz, B. MacKichan, Complexes of differential operators. The Mayer-Vietoris sequence, Invent. Math 35 (1976), 43-86 Zbl0332.58016MR423425
  4. G.E. Bredon, Sheaf theory, 170 (1997), Springer-Verlag Zbl0874.55001MR1481706
  5. J. Brinkschulte, Laufer’s vanishing theorem for embedded C R manifolds, Math. Z 239 (2002), 863-866 Zbl1008.32021MR1902064
  6. H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math 68 (1958), 460-472 Zbl0108.07804MR98847
  7. R. Harvey, L.B. Lawson, On the boundaries of complex analytic varieties I, Ann. of Math 102 (1975), 223-290 Zbl0317.32017MR425173
  8. C.D. Hill, M. Nacinovich, A necessary condition for global Stein immersion of compact C R manifolds, Riv. Mat. Univ. Parma 5 (1992), 175-182 Zbl0787.32020MR1230608
  9. C.D. Hill, M. Nacinovich, Duality and distribution cohomology of C R manifolds, Ann. Sc. Norm. Sup. Pisa 22 (1995), 315-339 Zbl0848.32003MR1354910
  10. H.B. Laufer, On the infinite dimensionality of the Dolbeault cohomology groups, Proc. Amer. Math. Soc 52 (1975), 293-296 Zbl0314.32008MR379887
  11. M. Nacinovich, On boundary Hilbert differential complexes, Ann. Polon. Math 46 (1985), 213-235 Zbl0606.58046MR841829
  12. M. Nacinovich, Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Ann 268 (1984), 449-471 Zbl0574.32045MR753407
  13. M. Nacinovich, G. Valli, Tangential Cauchy-Riemann complexes on distributions, Ann. Mat. Pura Appl 146 (1987), 123-160 Zbl0631.58024MR916690
  14. S.-T. Yau, Kohn-Rossi cohomology and its application to the complex Plateau problem I, Ann. of Math 113 (1981), 67-110 Zbl0464.32012MR604043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.