The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Remarks on measurable Boolean algebras and sequential cardinals”

Cellularity of free products of Boolean algebras (or topologies)

Saharon Shelah (2000)

Fundamenta Mathematicae

Similarity:

The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, θ = ( 2 c f ( μ ) ) + and 2 μ = μ + then there are Boolean algebras 𝔹 1 , 𝔹 2 such that c ( 𝔹 1 ) = μ , c ( 𝔹 2 ) < θ b u t c ( 𝔹 1 * 𝔹 2 ) = μ + . Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if 𝔹 is a ccc Boolean algebra and μ ω λ = c f ( λ ) 2 μ then 𝔹 satisfies the λ-Knaster condition (using the “revised GCH theorem”).

A new proof of Kelley's Theorem

S. Ng (1991)

Fundamenta Mathematicae

Similarity:

Kelley's Theorem is a purely combinatorial characterization of measure algebras. We first apply linear programming to exhibit the duality between measures and this characterization for finite algebras. Then we give a new proof of the Theorem using methods from nonstandard analysis.

Prenormality of ideals and completeness of their quotient algebras

A. Morawiec, B. Węglorz (1993)

Colloquium Mathematicae

Similarity:

It is well known that if a nontrivial ideal ℑ on κ is normal, its quotient Boolean algebra P(κ)/ℑ is κ + -complete. It is also known that such completeness of the quotient does not characterize normality, since P(κ)/ℑ turns out to be κ + -complete whenever ℑ is prenormal, i.e. whenever there exists a minimal ℑ-measurable function in κ κ . Recently, it has been established by Zrotowski (see [Z1], [CWZ] and [Z2]) that for non-Mahlo κ, not only is the above condition sufficient but also necessary...