Displaying similar documents to “Sur un corps non dénombrable de nombres réels”

Sur l'inversion des fonctions représentables analytiquement

Wacław Sierpiński (1922)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Soit α un nombre ordinal donné quelconque <Ω, il existe toujours une fonction ϕ(y) de classe ≥ α, inverse d'une fonction f(x) de classe 1.

Sur un ensemble abstrait, dont chaque élément est un élément limite de chaque sous ensemble non dénombrable

Bronisław Knaster, Wacław Sierpiński (1922)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de prouver l'existence et, en même temps, d'indiquer quelques caractères fondamentaux des classes ℒ (au sens de Fréchet) non dénombrables jouissant de la propriété suivante: Chaque élément de la classe considérée est un élément limite de chaque non dénombrable qui en fait partie.

Sur la dérivabilité des fonctions monotones

Alexandre Rajchman, Stanisław Saks (1923)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de donner une démonstration simple et élémentaire au i • téorème de Lebesgue, d'après lequel toute fonction monotone est presque partout dérivable; • théorème de Fubini, d'après lequel une série convergente de fonctions non décroissantes peut être presque partout différentiée terme à terme.

Sur le problème de la mesure

Stefan Banach (1923)

Fundamenta Mathematicae

Similarity:

Dans ce travail l'auteur s'occupe du problème de la mesure et des trois problèmes connexes suivants: Problème: Dans son livre "Leçons sur l'intégration" (Paris 1905) Monsieur Lebesgue énonce les propriétés de son intégrale: 1. Quels que soient a, b, h, on a ∫_{a}^{b}f(x)dx = ∫_{a+h}^{b+h}f(x-h)dx 2. Quels que soient a, b, c, on a ∫_{a}^{b}f(x)dx + ∫_{b}^{c}f(x)dx +∫_{c}^{a}f(x)dx = 0 3. ∫_{a}^{b}[f(x)+φ(x)]dx = ∫_{a}^{b}f(x)dx +∫_{a}^{b}φ(x)dx 4. Si l'on a f ≤ 0 et b>a, on a aussi...