Displaying similar documents to “Strong elements in lattices”

Residuation in orthomodular lattices

Ivan Chajda, Helmut Länger (2017)

Topological Algebra and its Applications

Similarity:

We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one. ...

On skew lattices. II.

Václav Slavík (1973)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Characterization of Birkhoff’s Conditions by Means of Cover-Preserving and Partially Cover-Preserving Sublattices

Marcin Łazarz (2016)

Bulletin of the Section of Logic

Similarity:

In the paper we investigate Birkhoff’s conditions (Bi) and (Bi*). We prove that a discrete lattice L satisfies the condition (Bi) (the condition (Bi*)) if and only if L is a 4-cell lattice not containing a cover-preserving sublattice isomorphic to the lattice S*7 (the lattice S7). As a corollary we obtain a well known result of J. Jakub´ık from [6]. Furthermore, lattices S7 and S*7 are considered as so-called partially cover-preserving sublattices of a given lattice L, S7 ≪ L and S7...

Finite atomistic lattices that can be represented as lattices of quasivarieties

K. Adaricheva, Wiesław Dziobiak, V. Gorbunov (1993)

Fundamenta Mathematicae

Similarity:

We prove that a finite atomistic lattice can be represented as a lattice of quasivarieties if and only if it is isomorphic to the lattice of all subsemilattices of a finite semilattice. This settles a conjecture that appeared in the context of [11].

Quasiorder lattices are five-generated

Júlia Kulin (2016)

Discussiones Mathematicae General Algebra and Applications

Similarity:

A quasiorder (relation), also known as a preorder, is a reflexive and transitive relation. The quasiorders on a set A form a complete lattice with respect to set inclusion. Assume that A is a set such that there is no inaccessible cardinal less than or equal to |A|; note that in Kuratowski's model of ZFC, all sets A satisfy this assumption. Generalizing the 1996 result of Ivan Chajda and Gábor Czéedli, also Tamás Dolgos' recent achievement, we prove that in this case the lattice of quasiorders...