The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Weighted weak type inequalities for certain maximal functions”

Some weighted inequalities for general one-sided maximal operators

F. Martín-Reyes, A. de la Torre (1997)

Studia Mathematica

Similarity:

We characterize the pairs of weights on ℝ for which the operators M h , k + f ( x ) = s u p c > x h ( x , c ) ʃ x c f ( s ) k ( x , s , c ) d s are of weak type (p,q), or of restricted weak type (p,q), 1 ≤ p < q < ∞, between the Lebesgue spaces with the coresponding weights. The functions h and k are positive, h is defined on ( x , c ) : x < c , while k is defined on ( x , s , c ) : x < s < c . If h ( x , c ) = ( c - x ) - β , k ( x , s , c ) = ( c - s ) α - 1 , 0 ≤ β ≤ α ≤ 1, we obtain the operator M α , β + f = s u p c > x 1 / ( c - x ) β ʃ x c f ( s ) / ( c - s ) 1 - α d s . For this operator, under the assumption 1/p - 1/q = α - β, we extend the weak type characterization to the case p = q and prove that in the case of equal...

The one-sided minimal operator and the one-sided reverse Holder inequality

David Cruz-Uribe, SFO, C. Neugebauer, V. Olesen (1995)

Studia Mathematica

Similarity:

We introduce the one-sided minimal operator, m + f , which is analogous to the one-sided maximal operator. We determine the weight classes which govern its two-weight, strong and weak-type norm inequalities, and show that these two classes are the same. Then in the one-weight case we use this class to introduce a new one-sided reverse Hölder inequality which has several applications to one-sided ( A p + ) weights.

Two weighted inequalities for convolution maximal operators.

Ana Lucía Bernardis, Francisco Javier Martín-Reyes (2002)

Publicacions Matemàtiques

Similarity:

Let φ: R → [0,∞) an integrable function such that φχ = 0 and φ is decreasing in (0,∞). Let τf(x) = f(x-h), with h ∈ R {0} and f(x) = 1/R f(x/R), with R &gt; 0. In this paper we characterize the pair of weights (u, v) such that the operators Mf(x) = sup|f| * [τφ](x) are of weak type (p, p) with respect to (u, v), 1 &lt; p &lt; ∞.

On boundedness properties of certain maximal operators

M. Menárguez (1995)

Colloquium Mathematicae

Similarity:

It is known that the weak type (1,1) for the Hardy-Littlewood maximal operator can be obtained from the weak type (1,1) over Dirac deltas. This theorem is due to M. de Guzmán. In this paper, we develop a technique that allows us to prove such a theorem for operators and measure spaces in which Guzmán's technique cannot be used.

Norm inequalities for the minimal and maximal operator, and differentiation of the integral.

David Cruz-Uribe, Christoph J. Neugebauer, Victor Olesen (1997)

Publicacions Matemàtiques

Similarity:

We study the weighted norm inequalities for the minimal operator, a new operator analogous to the Hardy-Littlewood maximal operator which arose in the study of reverse Hölder inequalities. We characterize the classes of weights which govern the strong and weak-type norm inequalities for the minimal operator in the two weight case, and show that these classes are the same. We also show that a generalization of the minimal operator can be used to obtain information about the differentiability...

The space Weak H¹

Robert Fefferman, Fernando Soria (1987)

Studia Mathematica

Similarity: