The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The dual of Besov spaces on fractals”

The local versions of H p ( n ) spaces at the origin

Shan Lu, Da Yang (1995)

Studia Mathematica

Similarity:

Let 0 < p ≤ 1 < q < ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces H K ̇ q α , p ( n ) which are the local versions of H p ( n ) spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth’s sense. We also prove an interpolation theorem for operators on H K ̇ q α , p ( n ) and discuss the H K ̇ q α , p ( n ) -boundedness of Calderón-Zygmund operators. Similar results can also be obtained...

Schauder decompositions and multiplier theorems

P. Clément, B. de Pagter, F. Sukochev, H. Witvliet (2000)

Studia Mathematica

Similarity:

We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for L p -spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.

Several characterizations for the special atom spaces with applications.

Geraldo Soares de Souza, Richard O&amp;#039;Neil, Gary Sampson (1986)

Revista Matemática Iberoamericana

Similarity:

The theory of functions plays an important role in harmonic analysis. Because of this, it turns out that some spaces of analytic functions have been studied extensively, such as H-spaces, Bergman spaces, etc. One of the major insights that has developed in the study of H-spaces is what we call the real atomic characterization of these spaces.

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

Similarity:

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...

A rigid space admitting compact operators

Paul Sisson (1995)

Studia Mathematica

Similarity:

A rigid space is a topological vector space whose endomorphisms are all simply scalar multiples of the identity map. The first complete rigid space was published in 1981 in [2]. Clearly a rigid space is a trivial-dual space, and admits no compact endomorphisms. In this paper a modification of the original construction results in a rigid space which is, however, the domain space of a compact operator, answering a question that was first raised soon after the existence of complete rigid...

On the theorem of Ivasev-Musatov. II

Thomas-William Korner (1978)

Annales de l'institut Fourier

Similarity:

As in Part I [Annales de l’Inst. Fourier, 27-3 (1997), 97-113], our object is to construct a measure whose support has Lebesgue measure zero, but whose Fourier transform drops away extremely fast.