The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Estimates for the Poisson kernels and their derivatives on rank one NA groups”

Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group

Ewa Damek, Andrzej Hulanicki (1991)

Studia Mathematica

Similarity:

On the domain S_a = {(x,e^b): x ∈ N, b ∈ ℝ, b > a} where N is a simply connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic operator L is considered. N × {e^a} is the Poisson boundary for L-harmonic functions F, i.e. F is the Poisson integral F(xe^b) = ʃ_N f(xy)dμ^b_a(x), for an f in L^∞(N). The main theorem of the paper asserts that the maximal function M^a f(x) = sup{|ʃf(xy)dμ_a^b(y)| : b > a} is of weak type (1,1).

Estimates on the solution of an elliptic equation related to Brownian motion with drift (II).

Joseph G. Conlon, Peder A. Olsen (1997)

Revista Matemática Iberoamericana

Similarity:

In this paper we continue the study of the Dirichlet problem for an elliptic equation on a domain in R3 which was begun in [5]. For R > 0 let ΩR be the ball of radius R centered at the origin with boundary ∂Ω R. The Dirichlet problem we are concerned with is the following: (-Δ - b(x).∇) u(x) = f(x),   x ∈ Ω R, with zero boundary conditions ...