Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group
Studia Mathematica (1991)
- Volume: 101, Issue: 1, page 33-68
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topDamek, Ewa, and Hulanicki, Andrzej. "Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group." Studia Mathematica 101.1 (1991): 33-68. <http://eudml.org/doc/215892>.
@article{Damek1991,
abstract = {On the domain S\_a = \{(x,e^b): x ∈ N, b ∈ ℝ, b > a\} where N is a simply connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic operator L is considered. N × \{e^a\} is the Poisson boundary for L-harmonic functions F, i.e. F is the Poisson integral F(xe^b) = ʃ\_N f(xy)dμ^b\_a(x), for an f in L^∞(N). The main theorem of the paper asserts that the maximal function M^a f(x) = sup\{|ʃf(xy)dμ\_a^b(y)| : b > a\} is of weak type (1,1).},
author = {Damek, Ewa, Hulanicki, Andrzej},
journal = {Studia Mathematica},
keywords = {simply connected nilpotent Lie group; degenerate elliptic operator; Poisson boundary; -harmonic functions; maximal function; weak type },
language = {eng},
number = {1},
pages = {33-68},
title = {Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group},
url = {http://eudml.org/doc/215892},
volume = {101},
year = {1991},
}
TY - JOUR
AU - Damek, Ewa
AU - Hulanicki, Andrzej
TI - Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group
JO - Studia Mathematica
PY - 1991
VL - 101
IS - 1
SP - 33
EP - 68
AB - On the domain S_a = {(x,e^b): x ∈ N, b ∈ ℝ, b > a} where N is a simply connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic operator L is considered. N × {e^a} is the Poisson boundary for L-harmonic functions F, i.e. F is the Poisson integral F(xe^b) = ʃ_N f(xy)dμ^b_a(x), for an f in L^∞(N). The main theorem of the paper asserts that the maximal function M^a f(x) = sup{|ʃf(xy)dμ_a^b(y)| : b > a} is of weak type (1,1).
LA - eng
KW - simply connected nilpotent Lie group; degenerate elliptic operator; Poisson boundary; -harmonic functions; maximal function; weak type
UR - http://eudml.org/doc/215892
ER -
References
top- [B] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1) (1969), 277-304. Zbl0176.09703
- [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196. Zbl0675.22005
- [DH] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. Zbl0699.22012
- [FS] G. B. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. Zbl0508.42025
- [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983. Zbl0562.35001
- [He] W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275. Zbl0716.35053
- [HS] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, ibid., 231-236. Zbl0723.22007
- [H1] A. Hulanicki, Subalgebra of L₁(G) associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
- [H2] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101.
- [HJ] A. Hulanicki and J. Jenkins, Nilpotent groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. Zbl0564.43007
- [K] C. Kenig, oral communication.
- [St] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83.
- [S] D. Stroock, Lectures on Stochastic Analysis: Diffusion Theory, Cambridge Univ. Press, 1987. Zbl0605.60057
- [SV] D. Stroock and S. R. Varadhan, Multidimensional Diffusion Processes, Springer, 1979. Zbl0426.60069
- [T] J. C. Taylor, Skew products, regular conditional probabilities and stochastic differential equations: a remark, preprint. Zbl0763.60031
- [Z] J. Zienkiewicz, in preparation.
Citations in EuDML Documents
top- Tadeusz Pytlik, Harmonic functions and Hardy spaces on trees with boundaries
- Jacek Zienkiewicz, Maximal estimates for nonsymmetric semigroups
- Jarosław Sołowiej, The Fatou theorem for NA groups - a negative result
- Ewa Damek, Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group
- Andrzej Hulanicki, Estimates for the Poisson kernels and a Fatou type theorem applications to analysis on Siegel domains
- Ewa Damek, Pointwise estimates for the Poisson kernel on NA groups by the Ancona method
- Ewa Damek, Andrzej Hulanicki, Jacek Zienkiewicz, Estimates for the Poisson kernels and their derivatives on rank one NA groups
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.