The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Minimal self-joinings and positive topological entropy II”

Sequence entropy pairs and complexity pairs for a measure

Wen Huang, Alejandro Maass, Xiangdong Ye (2004)

Annales de l’institut Fourier

Similarity:

In this paper we explore topological factors in between the Kronecker factor and the maximal equicontinuous factor of a system. For this purpose we introduce the concept of sequence entropy n -tuple for a measure and we show that the set of sequence entropy tuples for a measure is contained in the set of topological sequence entropy tuples [H- Y]. The reciprocal is not true. In addition, following topological ideas in [BHM], we introduce a weak notion and a strong notion of complexity...

Almost 1-1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows

T. Downarowicz, Y. Lacroix (1998)

Studia Mathematica

Similarity:

Let ( Z , T Z ) be a minimal non-periodic flow which is either symbolic or strictly ergodic. Any topological extension of ( Z , T Z ) is Borel isomorphic to an almost 1-1 extension of ( Z , T Z ) . Moreover, this isomorphism preserves the affine-topological structure of the invariant measures. The above extends a theorem of Furstenberg-Weiss (1989). As an application we prove that any measure-preserving transformation which admits infinitely many rational eigenvalues is measure-theoretically isomorphic to a strictly...