Displaying similar documents to “On Q-independence, limit theorems and q-Gaussian distribution”

Singleton independence

Luigi Accardi, Yukihiro Hashimoto, Nobuaki Obata (1998)

Banach Center Publications

Similarity:

Motivated by the central limit problem for algebraic probability spaces arising from the Haagerup states on the free group with countably infinite generators, we introduce a new notion of statistical independence in terms of inequalities rather than of usual algebraic identities. In the case of the Haagerup states the role of the Gaussian law is played by the Ullman distribution. The limit process is realized explicitly on the finite temperature Boltzmannian Fock space. Furthermore,...

Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case

Michael M. Erlihson, Boris L. Granovsky (2008)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, ∼ , →∞, >0, where is a positive constant. The measures considered are associated with the generalized Maxwell–Boltzmann models in statistical mechanics, reversible coagulation–fragmentation processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations...

A noncommutative limit theorem for homogeneous correlations

Romuald Lenczewski (1998)

Studia Mathematica

Similarity:

We state and prove a noncommutative limit theorem for correlations which are homogeneous with respect to order-preserving injections. The most interesting examples of central limit theorems in quantum probability (for commuting, anticommuting, and free independence and also various q-qclt's), as well as the limit theorems for the Poisson law and the free Poisson law are special cases of the theorem. In particular, the theorem contains the q-central limit theorem for non-identically distributed...

Symmetric partitions and pairings

Ferenc Oravecz (2000)

Colloquium Mathematicae

Similarity:

The lattice of partitions and the sublattice of non-crossing partitions of a finite set are important objects in combinatorics. In this paper another sublattice of the partitions is investigated, which is formed by the symmetric partitions. The measure whose nth moment is given by the number of non-crossing symmetric partitions of n elements is determined explicitly to be the "symmetric" analogue of the free Poisson law.