Limit shapes of Gibbs distributions on the set of integer partitions : the expansive case
Michael M. Erlihson; Boris L. Granovsky
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 5, page 915-945
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Andrews. The Theory of Partitions, Vol. 2. Addison-Wesley, 1976. Zbl0655.10001MR557013
- [2] R. Arratia and S. Tavare. Independent process appoximation for random combinatorial structures. Adv. Math. 104 (1994) 90–154. Zbl0802.60008MR1272071
- [3] A. Barbour, R. Arratia and S. Tavar’e. Logarithmic Combinatorial Structures: A Probabilistic Approach. European Mathematical Society Publishing House, Zurich, 2004. Zbl1040.60001MR2032426
- [4] A. Barbour and B. Granovsky. Random combinatorial structures: The convergent case. J. Combin. Theory Ser. A 109 (2005) 203–220. Zbl1065.60143MR2121024
- [5] S. Burris. Number Theoretic Density and Logical Limit Laws. Amer. Math. Soc., Providence, RI, 2001. Zbl0995.11001MR1800435
- [6] J. Bell. Sufficient conditions for zero–one laws. Trans. Amer. Math. Soc. 354 (2002) 613–630. Zbl0981.60030MR1862560
- [7] J. Bell and S. Burris. Asymptotics for logical limit laws: When the growth of the components is in RT class. Trans. Amer. Math. Soc. 355 (2003) 3777–3794. Zbl1021.03022MR1990173
- [8] N. Berestycki and J. Pitman. Gibbs distributions for random partitions generated by a fragmentation process. J. Stat. Phys. 127 (2007) 381–418. Zbl1126.82013MR2314353
- [9] L. Bogachev and Z. Su. Central limit theorem for random partitions under the Plancherel measure, preprint. Available at math.PR/0607635, 2006. Zbl1157.60012
- [10] R. Durrett. Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1995. Zbl0709.60002MR1609153
- [11] R. Durrett, B. Granovsky and S. Gueron. The equilibrium behaviour of reversible coagulation–fragmentation processes. J. Theoret. Probab. 12 (1999) 447–474. Zbl0930.60094MR1684753
- [12] M. Erlihson and B. Granovsky. Reversible coagulation–fragmentation processes and random combinatorial structures: Asymptotics for the number of groups. Random Structures Algorithms 25 (2004) 227–245. Zbl1060.60020MR2076340
- [13] G. Freiman and B. Granovsky. Asymptotic formula for a partition function of reversible coagulation–fragmentation processes. J. Israel Math. 130 (2002) 259–279. Zbl1003.60009MR1919380
- [14] G. Freiman and B. Granovsky. Clustering in coagulation–fragmentation processes, random combinatorial structures and additive number systems: Asymptotic formulae and limiting laws. Trans. Amer. Math. Soc. 357 (2005) 2483–2507. Zbl1062.60097MR2140447
- [15] G. Freiman and J. Pitman. Partitions into distinct large parts. J. Aust. Math. Soc. (Ser. A) 57 (1994) 386–416. Zbl0824.11064MR1297011
- [16] B. Fristedt. The structure of random partitions of large integers. Tran. Amer. Math. Soc. 337 (1993) 703–735. Zbl0795.05009MR1094553
- [17] A. Gnedin and J. Pitman. Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138 (2006) 5674–5685. Zbl1293.60010MR2160320
- [18] B. Granovsky. Asymptotics of counts of small components in random structures and models of coagulation–fragmentation. Available at math.Pr/0511381, 2006. Zbl1303.60013
- [19] B. Granovsky and D. Stark. Asymptotic enumeration and logical limit laws for expansive multisets. J. London Math. Soc. (2) 73 (2006) 252–272. Zbl1086.60006MR2197382
- [20] B. Granovsky and N. Madras. The noisy voter model. Stochastic Process. Appl. 55 (1995) 23–43. Zbl0813.60096MR1312146
- [21] D. Griffeath. Additive and Cancellative Interacting Particle Systems. Springer, New York, 1979. Zbl0412.60095MR538077
- [22] E. Hendriks, J. Spouge, M. Eibl and M. Schreckenberg. Exact solutions for random coagulation processes. Z. Phys. B – Cond. Matter. 58 (1985) 219–227.
- [23] O. Kallenberg. Foundations of Modern Probability. Springer, New York, 2001. Zbl0996.60001MR1876169
- [24] N. Kazimirov. On some conditions for absence of a giant component in the generalized allocation scheme. Discrete Math. Appl. 12 (2002) 291–302. Zbl1046.60018MR1937012
- [25] F. Kelly. Reversibility and Stochastic Networks. Wiley, New York, 1979. Zbl0422.60001MR554920
- [26] S. Kerov. Coherent random allocations, and the Ewens–Pitman formula, J. Math. Sci. 138 (2006) 5699–5710. Zbl1077.60007MR2160323
- [27] A. Khinchin. Mathematical Foundations of Quantum Statistics. Graylock Press, Albany, NY, 1960. Zbl0089.45004MR111217
- [28] V. Kolchin. Random Graphs. Cambridge Univ. Press, 1999. Zbl0918.05001MR1728076
- [29] B. Logan and L. Shepp. A variational problem for random Young tableaux. Adv. Math. 26 (1977) 206–222. Zbl0363.62068MR1417317
- [30] L. Mutafchiev. Local limit theorems for sums of power series distributed random variables and for the number of components in labelled relational structures. Random Structures Algorithms 3 (1992) 404–426. Zbl0769.60021MR1179830
- [31] O. Milenkovic and K. Compton. Probabilistic transforms for combinatorial urn models. Combin. Probab. Comput. 13 (2004) 645–675. Zbl1079.60017MR2095977
- [32] A. Okounkov. Symmetric functions and random partitions. Symmetric Functions 2001: Surveys of Developments and Perspectives 223–252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Acad. Publ., Dordrecht, 2002. Zbl1017.05103MR2059364
- [33] J. Pitman. Combinatorial Stochastic Processes. Springer, Berlin, 2006. Zbl1103.60004MR2245368
- [34] B. Pittel. On a likely shape of the random Ferrers diagram. Adv. in Appl. Math. 18 (1997) 432–488. Zbl0894.11039MR1445358
- [35] B. Pittel. On the distribution of the number of Young tableaux for a uniformly random diagram. Adv. in Appl. Math. 29 (2002) 184–214. Zbl1016.60030MR1928098
- [36] D. Romik. Identities arising from limit shapes of costrained randiom partitions, preprint, 2003.
- [37] A. Shiryaev. Probability. Springer, New York, 1984. Zbl0536.60001MR737192
- [38] S. Shlosman. Geometric variational problems of statistical mechanics and of combinatorics, probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000) 1364–1370. Zbl1052.82003MR1757963
- [39] S. Shlosman. Wulf construction in statistical mechanics and combinatorics. Russian Math. Surveys. 56 (2001) 709–738. Zbl1035.82013MR1861442
- [40] D. Stark. Logical limit laws for logarithmic structures. Math. Proc. Cambridge Philos. Soc. 140 (2005) 537–544. Zbl1096.03035MR2225646
- [41] H. Temperley. Statistical mechanics and the partition of numbers. The form of the crystal surfaces. Proc. Cambridge Philos. Soc. 48 (1952) 683–697. Zbl0048.19802MR53036
- [42] A. Vershik and S. Kerov. Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tables. Dokl. Akad. Nauk SSSR 233 (1977) 1024–1027. Zbl0406.05008MR480398
- [43] A. Vershik. Limit distribution of the energy of a quantum ideal gas from the viewpoint of the theory of partitions of natural numbers. Russian Math. Surveys 52 (1997) 139–146. Zbl0927.60089MR1480142
- [44] A. Vershik. Statistical mechanics of combinatorial partitions and their limit configurations. Funct. Anal. Appl. 30 (1996) 90–105. Zbl0868.05004MR1402079
- [45] A. Vershik, G. Freiman and Yu. Yakubovich. A local limit theorem for random partitions of natural numbers. Theory Probab. Appl. 44 (2000) 453–468. Zbl0969.60034MR1805818
- [46] A. Vershik and Y. Yakubovich. The limit shape and fluctuations of random partitions of naturals with fixed number of summands. Mosc. Math. J. 1 (2001) 457–468. Zbl0996.05006MR1877604
- [47] A. Vershik and Y. Yakubovich. Fluctuations of the maximal particle energy of the quantum ideal gas and random partitions. Comm. Math. Phys. 261 (2006) 759–769. Zbl1113.82010MR2197546
- [48] A. Vershik and Y. Yakubovich. Asymptotics of the uniform measure on the simplex, random compositions and partitions. Funct. Anal. Appl. 37 (2003) 39–48. Zbl1081.60009MR2083230
- [49] P. Whittle. Systems in Stochastic Equilibrium. Wiley, New York, 1986. Zbl0665.60107MR850012
- [50] Y. Yakubovich. Asymptotics of random partitions of a set. J. Math. Sci. 87 (1997) 4124–4137. Zbl0909.60017MR1374322