Geometry of nuclear spaces. II - Linear topological invariants
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979)
- page 1-10
Access Full Article
topHow to cite
topMityagin, B.. "Geometry of nuclear spaces. II - Linear topological invariants." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979): 1-10. <http://eudml.org/doc/109213>.
@article{Mityagin1978-1979,
author = {Mityagin, B.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {Nuclear Spaces; Linear Invariants; Spaces of Holomorphic Functions; Generalized Koethe Space; Equivalent; Approximative and Diametral Dimension; Domains of Holomorphy},
language = {eng},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Geometry of nuclear spaces. II - Linear topological invariants},
url = {http://eudml.org/doc/109213},
year = {1978-1979},
}
TY - JOUR
AU - Mityagin, B.
TI - Geometry of nuclear spaces. II - Linear topological invariants
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1978-1979
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - eng
KW - Nuclear Spaces; Linear Invariants; Spaces of Holomorphic Functions; Generalized Koethe Space; Equivalent; Approximative and Diametral Dimension; Domains of Holomorphy
UR - http://eudml.org/doc/109213
ER -
References
top- [1] A.N. Kolmogoroff, On linear dimension of topological vector spaces (Russian), Dokl. Akad. USSR, vol. 120 (1958), 239-241. Zbl0080.31203MR97704
- [2] A. Peczynski, On the approximation of S-spaces by finite dimensional spaces, Bull. Acad. Polon. Sci., ser. math., vol. 5, No 9 (1957), 879-881. Zbl0078.28703MR92114
- [3] B.S. Mityagin, Approximative dimension and bases in nuclear spaces (Russian), Uspehi Matem. Nauk, vol. 16, No 4 (1961), 63-132. Zbl0104.08601MR152865
- [4] C. Bessaga, A. Peczynski, S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci., ser. math.9 (1961), 677-683. Zbl0109.33502MR132374
- [5] A. Pietsch, Nukleare Lokalkonvexe Raume, Berlin, 1965. Zbl0184.14602MR181888
- [6] B. Mityagin, Surl'équivalence des bases inconditionnelles dans les échelles de Hilbert, C. R. Acad. Sc. Paris, t. 269 (1969), 426-428. Zbl0186.44704
- B. Mityagin, Equivalence of bases in Hilbert scales (Russian), Studia Math., vol. 37 No 2 (1971), 111-137. Zbl0215.19502MR322470
- [7] B. Mityagin, Geometry of linear spaces and linear operators (Russian), in "Theory of operators in function spaces", ed. by G.P. Akilov, "Nauka", Novosibirsk, 1977. MR511658
- [8] V. Zaharyuta, On isomorphism and quasiequivalence of bases in Köthe power spaces (Russian), Dokl. Akad. Nauk USSR, vol. 221 (1975), 772-774; and in " Operator theory in linear spacrs", ed. by B. Mityagin, CEMI AS USSR, Moscow, 1976, 101-126. Zbl0318.46016MR383043
- [9] V. Zararyuta, Generalized Mityagin invariants and cohtinuum of pairwise-nonisomorphic spaces of holomorphic functions, Function. Analyz (Russian), vol. 11, No 3 (1977), 24-30. Zbl0423.46015MR467268
- [10] B. Mityagin, expose I de ce volume.
- [11] M.M. Dvagilev, Regular bases in nuclear spaces (Russian), Matem. Sborn., vol. 68 (1965), 153-173. Zbl0206.11905MR192310
- V.P. Kondakov, On quasiequivalence of regular bases in Köthe spaces (Russian), Matem. Analyz i ego priloz., vol. 5, Rostov State Univ., Rostov-on-Don, 1974, 210-213. Zbl0358.46004
- L. Crone, W. Robinson, Every nuclear Fréchet space with a regular basis has the quasi-equivalence property, Studia Math.52, No 3 (1975), 203-207. Zbl0297.46008MR365080
- P. Djakov, A short proof of the theorem on quasiequivalence of regular bases, Studia Math.53, No 3 (1975). Zbl0317.46007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.