Geometry of nuclear spaces. II - Linear topological invariants

B. Mityagin

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979)

  • page 1-10

How to cite

top

Mityagin, B.. "Geometry of nuclear spaces. II - Linear topological invariants." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979): 1-10. <http://eudml.org/doc/109213>.

@article{Mityagin1978-1979,
author = {Mityagin, B.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {Nuclear Spaces; Linear Invariants; Spaces of Holomorphic Functions; Generalized Koethe Space; Equivalent; Approximative and Diametral Dimension; Domains of Holomorphy},
language = {eng},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Geometry of nuclear spaces. II - Linear topological invariants},
url = {http://eudml.org/doc/109213},
year = {1978-1979},
}

TY - JOUR
AU - Mityagin, B.
TI - Geometry of nuclear spaces. II - Linear topological invariants
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1978-1979
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - eng
KW - Nuclear Spaces; Linear Invariants; Spaces of Holomorphic Functions; Generalized Koethe Space; Equivalent; Approximative and Diametral Dimension; Domains of Holomorphy
UR - http://eudml.org/doc/109213
ER -

References

top
  1. [1] A.N. Kolmogoroff, On linear dimension of topological vector spaces (Russian), Dokl. Akad. USSR, vol. 120 (1958), 239-241. Zbl0080.31203MR97704
  2. [2] A. Peczynski, On the approximation of S-spaces by finite dimensional spaces, Bull. Acad. Polon. Sci., ser. math., vol. 5, No 9 (1957), 879-881. Zbl0078.28703MR92114
  3. [3] B.S. Mityagin, Approximative dimension and bases in nuclear spaces (Russian), Uspehi Matem. Nauk, vol. 16, No 4 (1961), 63-132. Zbl0104.08601MR152865
  4. [4] C. Bessaga, A. Peczynski, S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci., ser. math.9 (1961), 677-683. Zbl0109.33502MR132374
  5. [5] A. Pietsch, Nukleare Lokalkonvexe Raume, Berlin, 1965. Zbl0184.14602MR181888
  6. [6] B. Mityagin, Surl'équivalence des bases inconditionnelles dans les échelles de Hilbert, C. R. Acad. Sc. Paris, t. 269 (1969), 426-428. Zbl0186.44704
  7. B. Mityagin, Equivalence of bases in Hilbert scales (Russian), Studia Math., vol. 37 No 2 (1971), 111-137. Zbl0215.19502MR322470
  8. [7] B. Mityagin, Geometry of linear spaces and linear operators (Russian), in "Theory of operators in function spaces", ed. by G.P. Akilov, "Nauka", Novosibirsk, 1977. MR511658
  9. [8] V. Zaharyuta, On isomorphism and quasiequivalence of bases in Köthe power spaces (Russian), Dokl. Akad. Nauk USSR, vol. 221 (1975), 772-774; and in " Operator theory in linear spacrs", ed. by B. Mityagin, CEMI AS USSR, Moscow, 1976, 101-126. Zbl0318.46016MR383043
  10. [9] V. Zararyuta, Generalized Mityagin invariants and cohtinuum of pairwise-nonisomorphic spaces of holomorphic functions, Function. Analyz (Russian), vol. 11, No 3 (1977), 24-30. Zbl0423.46015MR467268
  11. [10] B. Mityagin, expose I de ce volume. 
  12. [11] M.M. Dvagilev, Regular bases in nuclear spaces (Russian), Matem. Sborn., vol. 68 (1965), 153-173. Zbl0206.11905MR192310
  13. V.P. Kondakov, On quasiequivalence of regular bases in Köthe spaces (Russian), Matem. Analyz i ego priloz., vol. 5, Rostov State Univ., Rostov-on-Don, 1974, 210-213. Zbl0358.46004
  14. L. Crone, W. Robinson, Every nuclear Fréchet space with a regular basis has the quasi-equivalence property, Studia Math.52, No 3 (1975), 203-207. Zbl0297.46008MR365080
  15. P. Djakov, A short proof of the theorem on quasiequivalence of regular bases, Studia Math.53, No 3 (1975). Zbl0317.46007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.