Displaying similar documents to “Bases in weakly sequentially complete Banach spaces”

Weakly Compact Generating and Shrinking Markusevic Bases

Fabian, M., Hájek, P., Montesinos, V., Zizler, V. (2006)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 46B30, 46B03. It is shown that most of the well known classes of nonseparable Banach spaces related to the weakly compact generating can be characterized by elementary properties of the closure of the coefficient space of Markusevic bases for such spaces. In some cases, such property is then shared by all Markusevic bases in the space.

Banach spaces in which all multilinear forms are weakly sequentially continuous

Jesús Castillo, Ricardo García, Raquel Gonzalo (1999)

Studia Mathematica

Similarity:

We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this...

An alternative Dunford-Pettis Property

Walden Freedman (1997)

Studia Mathematica

Similarity:

An alternative to the Dunford-Pettis Property, called the DP1-property, is introduced. Its relationship to the Dunford-Pettis Property and other related properties is examined. It is shown that p -direct sums of spaces with DP1 have DP1 if 1 ≤ p < ∞. It is also shown that for preduals of von Neumann algebras, DP1 is strictly weaker than the Dunford-Pettis Property, while for von Neumann algebras, the two properties are equivalent.