Displaying similar documents to “On Banach spaces containing c 0 . A supplement to the paper by J.Hoffman-Jørgensen “Sums of independent Banach space valued random variables””

Banach spaces with a supershrinking basis

Ginés López (1999)

Studia Mathematica

Similarity:

We prove that a Banach space X with a supershrinking basis (a special type of shrinking basis) without c 0 copies is somewhat reflexive (every infinite-dimensional subspace contains an infinite-dimensional reflexive subspace). Furthermore, applying the c 0 -theorem by Rosenthal, it is proved that X contains order-one quasireflexive subspaces if X is not reflexive. Also, we obtain a characterization of the usual basis in c 0 .

Separable quotients of Banach spaces.

Jorge Mújica (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

In this survey we show that the separable quotient problem for Banach spaces is equivalent to several other problems for Banach space theory. We give also several partial solutions to the problem.

Uniqueness of unconditional bases of c 0 ( l p ) , 0 < p < 1

C. Leránoz (1992)

Studia Mathematica

Similarity:

We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of c 0 ( l p ) must be equivalent to a permutation of a subset of the canonical unit vector basis of c 0 ( l p ) . In particular, c 0 ( l p ) has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for c 0 ( l ) .

L-summands in their biduals have Pełczyński's property (V*)

Hermann Pfitzner (1993)

Studia Mathematica

Similarity:

Banach spaces which are L-summands in their biduals - for example l 1 , the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński’s property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of l 1 .