The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On commutative approximate identities”

On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions

Dorota Bród, Anetta Szynal-Liana, Iwona Włoch (2022)

Czechoslovak Mathematical Journal

Similarity:

We study generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. We present some properties of these quaternions and the relations between the generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions.

Commutative directoids with sectional involutions

Ivan Chajda (2007)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

The concept of a commutative directoid was introduced by J. Ježek and R. Quackenbush in 1990. We complete this algebra with involutions in its sections and show that it can be converted into a certain implication algebra. Asking several additional conditions, we show whether this directoid is sectionally complemented or whether the section is an NMV-algebra.

Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type

Thomas Meyer (1997)

Studia Mathematica

Similarity:

Let ε ω ( I ) denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For μ ε ω ( I ) ' with s u p p ( μ ) = 0 one can define the convolution operator T μ : ε ω ( I ) ε ω ( I ) , T μ ( f ) ( x ) : = μ , f ( x - · ) . We give a characterization of the surjectivity of T μ for quasianalytic classes ε ω ( I ) , where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform μ ^ of μ.