Displaying similar documents to “The Pełczyński property for some uniform algebras”

Banach space properties of strongly tight uniform algebras

Scott Saccone (1995)

Studia Mathematica

Similarity:

We use the work of J. Bourgain to show that some uniform algebras of analytic functions have certain Banach space properties. If X is a Banach space, we say X is strongif X and X* have the Dunford-Pettis property, X has the Pełczyński property, and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and the polydisk-algebras are strong Banach spaces. Using Bourgain’s methods, Cima and Timoney have shown that if K is a compact planar set and A is R(K) or A(K),...

Compact homomorphisms between algebras of analytic functions

Richard Aron, Pablo Galindo, Mikael Lindström (1997)

Studia Mathematica

Similarity:

We prove that every weakly compact multiplicative linear continuous map from H ( D ) into H ( D ) is compact. We also give an example which shows that this is not generally true for uniform algebras. Finally, we characterize the spectra of compact composition operators acting on the uniform algebra H ( B E ) , where B E is the open unit ball of an infinite-dimensional Banach space E.

The Kadec-Pełczyński-Rosenthal subsequence splitting lemma for JBW*-triple preduals

Antonio M. Peralta, Hermann Pfitzner (2015)

Studia Mathematica

Similarity:

Any bounded sequence in an L¹-space admits a subsequence which can be written as the sum of a sequence of pairwise disjoint elements and a sequence which forms a uniformly integrable or equiintegrable (equivalently, a relatively weakly compact) set. This is known as the Kadec-Pełczyński-Rosenthal subsequence splitting lemma and has been generalized to preduals of von Neuman algebras and of JBW*-algebras. In this note we generalize it to JBW*-triple preduals.

Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces

Riccarda Rossi, Giuseppe Savaré (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Compactness in the space L p ( 0 , T ; B ) , B being a separable Banach space, has been deeply investigated by J.P. Aubin (1963), J.L. Lions (1961, 1969), J. Simon (1987), and, more recently, by J.M. Rakotoson and R. Temam (2001), who have provided various criteria for relative compactness, which turn out to be crucial tools in the existence proof of solutions to several abstract time dependent problems related to evolutionary PDEs. In the present paper, the problem is examined in view of Young measure...