The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A characterization of localized Bessel potential spaces and applications to Jacobi and Henkel multipliers”

A class of Fourier multipliers on H¹(ℝ²)

Michał Wojciechowski (2000)

Studia Mathematica

Similarity:

An integral criterion for being an H 1 ( 2 ) Fourier multiplier is proved. It is applied in particular to suitable regular functions which depend on the product of variables.

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

Similarity:

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.