The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On weighted norm inequalities for the maximal function”

Two weighted inequalities for convolution maximal operators.

Ana Lucía Bernardis, Francisco Javier Martín-Reyes (2002)

Publicacions Matemàtiques

Similarity:

Let φ: R → [0,∞) an integrable function such that φχ = 0 and φ is decreasing in (0,∞). Let τf(x) = f(x-h), with h ∈ R {0} and f(x) = 1/R f(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mf(x) = sup|f| * [τφ](x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.

Norm inequalities for off-centered maximal operators.

Richard L. Wheeden (1993)

Publicacions Matemàtiques

Similarity:

Sufficient conditions are derived in order that there exist strong-type weighted norm inequalities for some off-centered maximal functions. The maximal functions are of Hardy-Littlewood and fractional types taken over starlike sets in R. The sufficient conditions are close to necessary and extend some previously known weak-type results.