The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Almost everywhere convergence of some summabillity methods for Laguerre series”

Almost everywhere summability of Laguerre series. II

K. Stempak (1992)

Studia Mathematica

Similarity:

Using methods from [9] we prove the almost everywhere convergence of the Cesàro means of Laguerre series associated with the system of Laguerre functions L n a ( x ) = ( n ! / Γ ( n + a + 1 ) ) 1 / 2 e - x / 2 x a / 2 L n a ( x ) , n = 0,1,2,..., a ≥ 0. The novel ingredient we add to our previous technique is the A p weights theory. We also take the opportunity to comment and slightly improve on our results from [9].

Equisummability Theorems for Laguerre Series

Abd El-Aal El-Adad, El-Sayed (1996)

Serdica Mathematical Journal

Similarity:

Here we prove results about Riesz summability of classical Laguerre series, locally uniformly or on the Lebesgue set of the function f such that (∫(1 + x)^(mp) |f(x)|^p dx )^(1/p) < ∞, for some p and m satisfying 1 ≤ p ≤ ∞, −∞ < m < ∞.