Balls defined by nonsmooth vector fields and the Poincaré inequality
Annamaria Montanari[1]; Daniele Morbidelli
- [1] Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40127 Bologna (Italie)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 2, page 431-452
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMontanari, Annamaria, and Morbidelli, Daniele. "Balls defined by nonsmooth vector fields and the Poincaré inequality." Annales de l’institut Fourier 54.2 (2004): 431-452. <http://eudml.org/doc/116117>.
@article{Montanari2004,
abstract = {We provide a structure theorem for Carnot-Carathéodory balls defined by a family of
Lipschitz continuous vector fields. From this result a proof of Poincaré inequality
follows.},
affiliation = {Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40127 Bologna (Italie)},
author = {Montanari, Annamaria, Morbidelli, Daniele},
journal = {Annales de l’institut Fourier},
keywords = {vector fields; Carnot-Carathéodory distance; Poincaré inequality},
language = {eng},
number = {2},
pages = {431-452},
publisher = {Association des Annales de l'Institut Fourier},
title = {Balls defined by nonsmooth vector fields and the Poincaré inequality},
url = {http://eudml.org/doc/116117},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Montanari, Annamaria
AU - Morbidelli, Daniele
TI - Balls defined by nonsmooth vector fields and the Poincaré inequality
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 2
SP - 431
EP - 452
AB - We provide a structure theorem for Carnot-Carathéodory balls defined by a family of
Lipschitz continuous vector fields. From this result a proof of Poincaré inequality
follows.
LA - eng
KW - vector fields; Carnot-Carathéodory distance; Poincaré inequality
UR - http://eudml.org/doc/116117
ER -
References
top- G. Citti, E. Lanconelli, A. Montanari, Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math 188 (2002), 87-128 Zbl1030.35084MR1947459
- G. Citti, A. Montanari, Strong solutions for the Levi curvature equation, Adv. in Diff. Eq 5 (2000), 323-342 Zbl1211.35112MR1734545
- K. Deimling, Nonlinear functional analysis, (1985), Springer-Verlag, Berlin Zbl0559.47040MR787404
- L. Evans, R. Gapiery, Measure theory and fine properties of functions, (1992), CRC Press Zbl0804.28001MR1158660
- C. Fefferman, D. H. Phong, Subelliptic eigenvalue problems, Conference on Harmonic Analysis in honor of Antoni Zygmund (1983), 590-606, Wadsworth, Belmont, Calif Zbl0503.35071MR730094
- B. Franchi, E. Lanconelli, Une métrique associée à une classe d'opérateurs elliptiques dégénérés, Conference on Linear Partial and Pseudodifferential Operators (special issue) (1984), 105-114 Zbl0553.35033MR745979
- B. Franchi, E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1983), 523-541 Zbl0552.35032MR753153
- B. Franchi G. Lu, R. Wheeden, A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices 1 (1996), 1-14 Zbl0856.43006MR1383947
- B. Franchi, R. Serapioni, F. Serra Cassano, Approximation and Imbedding Theorems for Weighted Sobolev Spaces Associated with Lipschitz Continuous Vector Fields, Boll. Un. Mat. Ital. (7) B11 (1997), 83-117 Zbl0952.49010MR1448000
- N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math 49 (1996), 1081-1144 Zbl0880.35032MR1404326
- N. Garofalo, D. M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math 74 (1998), 67-97 Zbl0906.46026MR1631642
- P. Hajlasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc 688 (2000) Zbl0954.46022MR1683160
- D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J 53 (1986), 503-523 Zbl0614.35066MR850547
- E. Lanconelli, Stime subellittiche e metriche Riemanniane singolari, Seminario di Analisi Matematica, Università di Bologna (A.A 1982-83)
- E. Lanconelli, D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat 38 (2000), 327-342 Zbl1131.46304MR1785405
- P. Maheux, L. Saloff-Coste, Analyse sur le boules d'un opérateur sous-elliptique, Math. Ann 303 (1995), 713-746 Zbl0836.35106MR1359957
- A. Montanari, D. Morbidelli, Sobolev and Morrey estimates for non-smooth Vector Fields of step two, Z. Anal. Anwendungen 21 (2002), 135-157 Zbl1032.46051MR1916408
- D. Morbidelli, Fractional Sobolev norms and structure of the Carnot--Carathéodory balls for Hörmander vector fields, Studia Math 139 (2000), 213-244 Zbl0981.46034MR1762582
- A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math 155 (1985), 103-147 Zbl0578.32044MR793239
- F. Rampazzo, H. J. Sussman, Set--valued differential and a nonsmooth version of Chow's theorem, Proceedings of the 40th IEEE Conference on Decision and Control; Orlando, Florida (2001)
- L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38 Zbl0769.58054MR1150597
- N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, 100 (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.