Balls defined by nonsmooth vector fields and the Poincaré inequality

Annamaria Montanari[1]; Daniele Morbidelli

  • [1] Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40127 Bologna (Italie)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 2, page 431-452
  • ISSN: 0373-0956

Abstract

top
We provide a structure theorem for Carnot-Carathéodory balls defined by a family of Lipschitz continuous vector fields. From this result a proof of Poincaré inequality follows.

How to cite

top

Montanari, Annamaria, and Morbidelli, Daniele. "Balls defined by nonsmooth vector fields and the Poincaré inequality." Annales de l’institut Fourier 54.2 (2004): 431-452. <http://eudml.org/doc/116117>.

@article{Montanari2004,
abstract = {We provide a structure theorem for Carnot-Carathéodory balls defined by a family of Lipschitz continuous vector fields. From this result a proof of Poincaré inequality follows.},
affiliation = {Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40127 Bologna (Italie)},
author = {Montanari, Annamaria, Morbidelli, Daniele},
journal = {Annales de l’institut Fourier},
keywords = {vector fields; Carnot-Carathéodory distance; Poincaré inequality},
language = {eng},
number = {2},
pages = {431-452},
publisher = {Association des Annales de l'Institut Fourier},
title = {Balls defined by nonsmooth vector fields and the Poincaré inequality},
url = {http://eudml.org/doc/116117},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Montanari, Annamaria
AU - Morbidelli, Daniele
TI - Balls defined by nonsmooth vector fields and the Poincaré inequality
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 2
SP - 431
EP - 452
AB - We provide a structure theorem for Carnot-Carathéodory balls defined by a family of Lipschitz continuous vector fields. From this result a proof of Poincaré inequality follows.
LA - eng
KW - vector fields; Carnot-Carathéodory distance; Poincaré inequality
UR - http://eudml.org/doc/116117
ER -

References

top
  1. G. Citti, E. Lanconelli, A. Montanari, Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math 188 (2002), 87-128 Zbl1030.35084MR1947459
  2. G. Citti, A. Montanari, Strong solutions for the Levi curvature equation, Adv. in Diff. Eq 5 (2000), 323-342 Zbl1211.35112MR1734545
  3. K. Deimling, Nonlinear functional analysis, (1985), Springer-Verlag, Berlin Zbl0559.47040MR787404
  4. L. Evans, R. Gapiery, Measure theory and fine properties of functions, (1992), CRC Press Zbl0804.28001MR1158660
  5. C. Fefferman, D. H. Phong, Subelliptic eigenvalue problems, Conference on Harmonic Analysis in honor of Antoni Zygmund (1983), 590-606, Wadsworth, Belmont, Calif Zbl0503.35071MR730094
  6. B. Franchi, E. Lanconelli, Une métrique associée à une classe d'opérateurs elliptiques dégénérés, Conference on Linear Partial and Pseudodifferential Operators (special issue) (1984), 105-114 Zbl0553.35033MR745979
  7. B. Franchi, E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1983), 523-541 Zbl0552.35032MR753153
  8. B. Franchi G. Lu, R. Wheeden, A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices 1 (1996), 1-14 Zbl0856.43006MR1383947
  9. B. Franchi, R. Serapioni, F. Serra Cassano, Approximation and Imbedding Theorems for Weighted Sobolev Spaces Associated with Lipschitz Continuous Vector Fields, Boll. Un. Mat. Ital. (7) B11 (1997), 83-117 Zbl0952.49010MR1448000
  10. N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math 49 (1996), 1081-1144 Zbl0880.35032MR1404326
  11. N. Garofalo, D. M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math 74 (1998), 67-97 Zbl0906.46026MR1631642
  12. P. Hajlasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc 688 (2000) Zbl0954.46022MR1683160
  13. D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J 53 (1986), 503-523 Zbl0614.35066MR850547
  14. E. Lanconelli, Stime subellittiche e metriche Riemanniane singolari, Seminario di Analisi Matematica, Università di Bologna (A.A 1982-83) 
  15. E. Lanconelli, D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat 38 (2000), 327-342 Zbl1131.46304MR1785405
  16. P. Maheux, L. Saloff-Coste, Analyse sur le boules d'un opérateur sous-elliptique, Math. Ann 303 (1995), 713-746 Zbl0836.35106MR1359957
  17. A. Montanari, D. Morbidelli, Sobolev and Morrey estimates for non-smooth Vector Fields of step two, Z. Anal. Anwendungen 21 (2002), 135-157 Zbl1032.46051MR1916408
  18. D. Morbidelli, Fractional Sobolev norms and structure of the Carnot--Carathéodory balls for Hörmander vector fields, Studia Math 139 (2000), 213-244 Zbl0981.46034MR1762582
  19. A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math 155 (1985), 103-147 Zbl0578.32044MR793239
  20. F. Rampazzo, H. J. Sussman, Set--valued differential and a nonsmooth version of Chow's theorem, Proceedings of the 40th IEEE Conference on Decision and Control; Orlando, Florida (2001) 
  21. L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38 Zbl0769.58054MR1150597
  22. N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, 100 (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.