The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “BMO and smooth truncation in Sobolev spaces”

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

Similarity:

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

Several characterizations for the special atom spaces with applications.

Geraldo Soares de Souza, Richard O'Neil, Gary Sampson (1986)

Revista Matemática Iberoamericana

Similarity:

The theory of functions plays an important role in harmonic analysis. Because of this, it turns out that some spaces of analytic functions have been studied extensively, such as H-spaces, Bergman spaces, etc. One of the major insights that has developed in the study of H-spaces is what we call the real atomic characterization of these spaces.

Schauder decompositions and multiplier theorems

P. Clément, B. de Pagter, F. Sukochev, H. Witvliet (2000)

Studia Mathematica

Similarity:

We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for L p -spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.