Displaying similar documents to “On the Hausdorff dimension of some fractal sets”

On the Hausdorff dimension of piecewise hyperbolic attractors

Tomas Persson (2010)

Fundamenta Mathematicae

Similarity:

We study non-invertible piecewise hyperbolic maps in the plane. The Hausdorff dimension of the attractor is calculated in terms of the Lyapunov exponents, provided that the map satisfies a transversality condition. Explicit examples of maps for which this condition holds are given.

On the Hausdorff dimension of a family of self-similar sets with complicated overlaps

Balázs Bárány (2009)

Fundamenta Mathematicae

Similarity:

We investigate the properties of the Hausdorff dimension of the attractor of the iterated function system (IFS) {γx,λx,λx+1}. Since two maps have the same fixed point, there are very complicated overlaps, and it is not possible to directly apply known techniques. We give a formula for the Hausdorff dimension of the attractor for Lebesgue almost all parameters (γ,λ), γ < λ. This result only holds for almost all parameters: we find a dense set of parameters (γ,λ) for which the Hausdorff...

On the Hyperbolic Hausdorff Dimension of the Boundary of a Basin of Attraction for a Holomorphic Map and of Quasirepellers

Feliks Przytycki (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

e prove that the hyperbolic Hausdorff dimension of Fr Ω, the boundary of the simply connected immediate basin of attraction Ω to an attracting periodic point of a rational mapping of the Riemann sphere, which is not a finite Blaschke product in some holomorphic coordinates, or a 2:1 factor of a Blaschke product, is larger than 1. We prove a "local version" of this theorem, for a boundary repelling to the side of the domain. The results extend an analogous fact for...

On the attractors of Feigenbaum maps

Guifeng Huang, Lidong Wang (2014)

Annales Polonici Mathematici

Similarity:

A solution of the Feigenbaum functional equation is called a Feigenbaum map. We investigate the likely limit set (i.e. the maximal attractor in the sense of Milnor) of a non-unimodal Feigenbaum map, prove that it is a minimal set that attracts almost all points, and then estimate its Hausdorff dimension. Finally, for every s ∈ (0,1), we construct a non-unimodal Feigenbaum map with a likely limit set whose Hausdorff dimension is s.