The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Weak bounds for the maximal function in weighted Orlicz spaces”

Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator

S. Bloom, R. Kerman (1994)

Studia Mathematica

Similarity:

Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies Δ 2 . Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.

Two-weight weak type maximal inequalities in Orlicz classes

Luboš Pick (1991)

Studia Mathematica

Similarity:

Necessary and sufficient conditions are shown in order that the inequalities of the form ϱ ( M μ f > λ ) Φ ( λ ) C ʃ X Ψ ( C | f ( x ) | ) σ ( x ) d μ , or ϱ ( M μ f > λ ) C ʃ X Φ ( C λ - 1 | f ( x ) | ) σ ( x ) d μ hold with some positive C independent of λ > 0 and a μ-measurable function f, where (X,μ) is a space with a complete doubling measure μ, M μ is the maximal operator with respect to μ, Φ, Ψ are arbitrary Young functions, and ϱ, σ are weights, not necessarily doubling.

Weighted norm inequalities on spaces of homogeneous type

Qiyu Sun (1992)

Studia Mathematica

Similarity:

We give a characterization of the weights (u,w) for which the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w). We give a characterization of the weight functions w (respectively u) for which there exists a nontrivial u (respectively w > 0 almost everywhere) such that the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w).

On the two-weight problem for singular integral operators

David Cruz-Uribe, Carlos Pérez (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We give A p type conditions which are sufficient for two-weight, strong ( p , p ) inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function g λ * . Our results extend earlier work on weak ( p , p ) inequalities in [13].